SR-60/World Logistics Center Parkway

Preliminary Site Investigation

Riverside County, California City of Moreno Valley 08-RIV-60-PM 20.0/22.0 EA 0M590

March 2019

March 14, 2019 Project No. 10326.001

Michael Baker International 3536 Concourse Street, Suite 100 Ontario, California 91761

Subject: Preliminary Site Investigation Proposed SR-60/WLC Parkway Interchange Improvements PM 20-22, Bridge No. 56-0488 (N 33.93928, W 117.13927) EA 0M590, PN 0813000109

This *Preliminary Site Investigation (PSI)* is presented in support of the *Project Approval and Environmental Document (PA&ED) Phase* of the project. The purpose of the PSI is to develop information on the concentrations of organochlorine pesticides and arsenical herbicides in former agricultural areas within the project boundaries, and the concentrations of total petroleum hydrocarbons and metals in the soil stockpile located on the Metropolitan Water District property, The PSI was conducted in accordance with the California Department of Transportation (Caltrans) Preliminary Site Assessment Guidance (Caltrans, 2007), and establish cost effective management practices of impacted soils during construction that are protective of human health and the environment, complies with federal, state and local regulations, and minimizes long-term liabilities.

This report has been prepared by Leighton Consulting Inc. (Leighton) under the direction of the following registered professional.

Zachary Freeman, PG, 9460 Project Geologist (Expires June 30, 2019)

Distribution: (4) MBI, Attention: Brandon Reyes (plus 2 CD's)

TABLE OF CONTENTS

<u>Sectio</u>	<u>n</u> <u>P</u>	age
EXE	CUTIVE SUMMARY	.E-1
1.0 1.1 1.2	INTRODUCTION Existing Facilities and Proposed Improvements Need and Purpose	1 1 3
2.0	SAMPLING STRATEGY AND RATIONALE	5
3.0 3.1 3.2 3.3 3.4	PRE-FIELD ACTIVITIES Health and Safety Plan Utilities Encroachment Permit Traffic Control	6 6 6 6
4.0 4.1 4.2 4.3 4.4 4.5 4.6	FIELD INVESTIGATION Preliminary Site Investigation Sample Collection Equipment Decontamination Sampling Containers, Preservation, and Holding Times Sampling Handling and Storage. Sample Custody	7 7 7 8 8 8
5 . 0 5.1 5.2 5. 5.	LABORATORY ANALYSIS Analytical Methods Requirements Preliminary Site Investigation 2.1 Agricultural Investigation 2.2 Soil Stockpile Investigation	9 9 9 9 9
6.0 6.1 6.2 6.3 6.	QUALITY ASSURANCE PROJECT PLAN (QAPP) Field Duplicate Samples Field Equipment Blanks Quality Control Soil Analysis Results 3.1	11 11 11 11 12
7.0 7.1 7. 7.2 7.2 7. 7. 7.	RESULTS OF INVESTIGATION Agricultural Soil Samples 1.1 OCPs 1.2 Arsenic Unverified Soil Stockpile Soil Samples 2.1 OCPs 2.2 Title 22 Metals 2.3 TPH	13 13 13 13 13 14 14 14
8.0 9.0	CONCLUSIONS AND RECOMMENDATIONS REFERENCES	15 17

Figures

Figure 1	Site Location Map
Figure 2a	Sample Location Map – Alternative 2
Figure 2b	Sample Location Map – Alternative 6
Figure 2c	Sample Location Map – Alternative 2a

Figure 2c Sample Location Map – Alternative 2a Figure 2d Sample Location Map – Alternative 6a

<u>Tables</u>

- Table 1
 Summary of Sampling and Analyses Program
- Table 2Summary of OCPs in Soil
- Table 3Summary of Metals in Soil
- Table 4Summary of TPH in Soil
- Table 5
 Relative Percent Difference Analysis

Appendices

- Appendix A Soil Sample Log
- Appendix B Boring Locations
- Appendix C Laboratory Reports

ACRONYM LIST

PSI	-	Preliminary Site Assessment
bgs	-	Below Ground Surface
Caltrans	-	California Department of Transportation
CEQA	-	California Environmental Quality Act
CFR	-	Code of Federal Regulations
CHHSL	-	California Human Health Screening Level
DI	-	Deionized Water
DQO	-	Data Quality Objective
DTSC	-	Department of Toxic Substances Control
EPA	-	Environmental Protection Agency
FHWA	-	Federal Highway Administration
FONSI	-	Finding Of No Significant Impact
ft	_	Foot/Feet
GPS	-	Global Positioning System
HSP	-	Health and Safety Plan
LCS	-	Laboratory Control Sample
LCSD	-	Laboratory Control Sample Duplicate
LOS	-	Level of Service
MDL	-	Method Detection Limit
ma/ka	-	Milligrams per Kilogram
ma/L	-	Milligrams per Liter
mi	-	Mile
MND	-	Mitigated Negative Declaration
MS	-	Matrix Spike
MSD	-	Matrix Spike Duplicate
NAD 83	-	North American Datum of 1983
NEPA	-	National Environmental Policy Act
OSHA	-	Occupational Safety and Health Administration
PARCC	-	Precision, Accuracy, Representativeness, comparability, and Completeness
рН	-	Negative logarithm of the hydrogen ion concentration of a substance in moles per liter.
PM	-	Post Mile
PPE	-	Personal Protective Equipment
PQL	-	Practical Quantitation Limit
QA/QC	-	Quality Assurance/Quality Control
RTP	-	Regional Transportation Plan
RPD	-	Relative Percent Difference
SCAG	-	Southern California Area Governments
SCS	-	Sustainable Communities Strategy
SDG	-	Sample Delivery Group
SI	-	Site Investigation
SR-60	-	State Route 60
STLC	-	Soluble Threshold Limit Concentration
TCLP	-	Toxicity Characteristic Leaching Procedure
TTLC	-	Total Threshold Limit Concentration

- UCL -
- Upper Confidence Level Underground Service Alert USA -
- USC -United States Code
- -USCS
- Unified Soil Classification System California Waste Extraction Test Citric Acid WET-CA -
- California Waste Extraction Test Deionized Water WET-DI

EXECUTIVE SUMMARY

Leighton Consulting, Inc. (Leighton) performed a Preliminary Site Assessment (PSI) for the State Route 60 (SR-60) Freeway World Logistics Center Parkway (WLC Pkwy) Interchange Improvement Project within the City of Moreno Valley in Riverside County, California (Figure 1). The work has been conducted to assess areas of potential impacted soil within the California Department of Transportation (Caltrans) right-of-way located within the project area.

The subject alignment currently consists of Post Miles (PM) 20-22 and Bridge No. 56-0488 (collectively referred to as the "project") (see Figure 1 – Site Location Map). SR-60 is predominately a four lane divided urban freeway with two 12-foot wide lanes in each direction. The inside and outside shoulders vary in width due to the steep sloping topography in the area. The structural section of the existing mainline is asphalt concrete pavement.

Historically portions of the current project area were occupied by agricultural row crops, SR-60, and the Theodore Street bridge (Leighton, 2018). The Initial Site Assessment completed by Leighton in 2018, stated that impacted soil from residual organochlorine pesticides (OCPs) and arsenical herbicides may be present in the current project area (Leighton, 2018). An unverified soil stockpile was reported southeast of the intersection of SR-60 and WLC Parkway within the current boundaries of the project area, and sampling of the stockpile for total petroleum hydrocarbons (TPH), OCPs, and Title 22 metals was recommended (Leighton, 2018).

On October 25, and November 10, 2018, total of 28 primary borings and 4 duplicate borings were advanced within the right-of-way of the former agricultural portions of the project area. Discrete soil samples were collected from each boring at 0.5 and 2.5 feet bgs using either a direct push drill rig or a hand auger, depending on boring location conditions (Figure 2).

On November 10, 2018, sampling was performed to assess the potential for impacted soil from the unverified soil stockpile located on APN 422-040-009, owned by the Metropolitan Water District (MWD). Four primary soil borings, and two duplicate soil borings, were advanced to a depth of 10 feet bgs using a direct push drill rig or hand auger (Figure 2). Soil samples were collected at 0.5, 5.0, and 10.0 feet bgs from each boring and analyzed for TPH, OCPs, and Title 22 metals.

The soil samples collected for the Preliminary Site Investigation reported arsenic concentrations ranging from 1.68 mg/kg to 5.72 milligrams per kilogram (mg/kg). The reported concentrations of arsenic were above the US Environmental Protection Agency's (US EPA) Regional Screening Levels (RSLs) and the DTSC HERO Note 3 screening value, for human health risk (residential) scenarios for unrestricted land use. The reported arsenic concentrations were below the DTSC established Southern California ambient background concentration of 12 mg/kg (DTSC, 2008; DTSC, 2016; EPA; 2018). Therefore, arsenic concentrations do not present a health hazard and are below the California and Federal hazardous waste criteria. The reported concentrations of Title 22 metals and OCPs were below the US EPA's RSLs and the DTSC HERO Note 3 screening value, for human health risk (residential) scenarios for unrestricted land use. TPH was not reported above the laboratory reporting limits in the soil samples analyzed during this investigation.

Two previous ADL Surveys were completed by Leighton in 2008 and in 2016 (Leighton 2008, Leighton, 2016). Based on the ADL Surveys data and statistical analysis, tested soil does not represent significant environmental or health hazards and, according to the DTSC draft soil management agreement, the soil located along SR-60 does not meet the definition of ADL-contaminated soil, and can be reused on site. Per the draft soil management agreement, the DTSC must be notified of the project, and a Lead Compliance Plan is required for worker safety.

A hazardous material (HAZMAT) survey was completed for the WLC Pkwy bridge by Vista Environmental for Leighton, and presented in a separate report (Leighton, 2019). The HAZMAT report stated that the lead-based paint materials sampled on the bridge contained lead at a maximum concentration of 220 mg/kg and chromium at a maximum concentration of 3.9 mg/kg (Leighton, 2019). The HAZMAT survey also stated that asbestos containing materials (ACM) were not present in the bridge structure (Leighton, 2019).

Based on the results of the soil samples collected during the Preliminary Site Investigation, the ADL Survey, and the sampled materials collected during the HAZMAT survey, a soil management plan is not recommended.

1.0 INTRODUCTION

1.1 Existing Facilities and Proposed Improvements

The City of Moreno Valley (City), in cooperation with the California Department of Transportation (Caltrans), District 8, proposes to reconstruct and improve the State Route 60 (SR-60)/WLC Pkwy interchange. The majority of the project site is located in the City of Moreno Valley; however, the northeast quadrant of the site is located within unincorporated Riverside County (County) but within the City's Sphere of Influence. The purpose of the project is to alleviate existing and future traffic congestion at the SR-60/WLC Pkwy interchange ramps during peak hours, to improve traffic flow along the freeway and through the interchange, to improve safety by upgrading the geometry at the current interchange, and to provide standard vertical clearance for the WLC Pkwy overcrossing.

The project will be funded with a variety of funding sources including federal sources and local funds and, as such, will be required to comply with both the California Environmental Quality Act (CEQA) and the National Environmental Policy Act (NEPA). Caltrans will be the Lead Agency for CEQA, the City is a Responsible Agency under CEQA, and the Federal Highway Administration (FHWA) is the federal Lead Agency for NEPA. The environmental review, consultation, and any other action required in accordance with the applicable federal laws for this project will be carried out by Caltrans under its assumption of responsibility pursuant to 23 United States Code (USC) 327. Therefore, preparation of the NEPA compliance documents, including the technical studies and the environmental document, will have oversight by Caltrans District 8. An Initial Study/Environmental Assessment (IS/EA) (joint CEQA/NEPA document) is being prepared and is anticipated to result in a Mitigated Negative Declaration/Finding of No Significant Impact (MND/FONSI).

Although the City's General Plan Circulation Element designates WLC Pkwy as a Minor Arterial (two lanes in each direction), existing WLC Pkwy through the project limits is one travel lane in each direction, including on the overcrossing over SR-60. Existing SR-60 between Redlands Boulevard and Gilman Springs Road is two mixed-flow travel lanes in each direction. The proposed project would construct modifications to the existing SR-60/WLC Pkwy interchange from Post Mile 20.0 to Post Mile 22.0 on SR-60, a distance of approximately 2 miles (mi). Major improvements to the interchange will include: (1) reconstruction of the westbound and eastbound on- and off-ramps to SR-60, and (2) replacement of

the existing WLC Pkwy overcrossing with an expanded four-lane overcrossing (two through lanes in each direction) with a minimum 16.5-foot (ft) vertical clearance between the eastbound and westbound SR-60 ramps and a six-lane cross-section on WLC Pkwy between the southern limits of the project and the eastbound SR-60 ramps. The proposed improvements to the on- and off-ramps would extend approximately 4,500 ft west and 2,900 ft east of the proposed overcrossing on SR-60 for proposed auxiliary lanes in each direction. The proposed improvements to Theodore Street/WLC Pkwy would extend approximately 2,300 ft north of SR-60 to Ironwood Avenue and approximately 3,200 ft south of SR-60. Project construction is anticipated to begin in early 2022 and be completed in winter 2023.

An existing Caltrans paved material transfer area located in the southwest quadrant of the existing SR-60/WLC Pkwy interchange, within the existing eastbound loop on-ramp, is currently used as a temporary site for the transfer of street sweeping materials. The existing paved material transfer area will be relocated as part of the proposed project.

Three alternatives and two design variations will be evaluated in the environmental document for the proposed project: Alternative 1 (No Build Alternative [no project]), Alternative 2 (Modified Partial Cloverleaf), Alternative 6 (Modified Partial Cloverleaf with Roundabout Intersections), Alternative 2 with Design Variation (Alternative 2a) and Alternative 6 with Design Variation (Alternative 6a). The Design Variations for each Build Alternative are similar and would realign the Eucalyptus Avenue to join WLC Pkwy approximately 900' south of the existing Eucalyptus Avenue/WLC Pkwy intersection. Both Build Alternatives would require six full right of way acquisitions, and there will be partial right-of-way acquisitions within all four quadrants of the interchange. One full acquisition would result in a residential displacement under both Build Alternatives.

During the construction phase of the proposed project, removal of the existing overcrossing and construction of the new overcrossing and ramps would interfere with access to the SR-60 at WLC Pkwy. The WLC Pkwy overcrossing is being evaluated for closure during construction of the proposed project. Therefore, if not done prior to this project, Eucalyptus Avenue would be extended and improved approximately 5,100 ft between WLC Pkwy and Redlands Boulevard to provide a detour route to SR-60. The improvements to Eucalyptus Avenue will be constructed early in the construction schedule, prior to the closure of the WLC

Pkwy overcrossing. North of the freeway, access to SR-60 during construction would be provided via Ironwood Avenue and Redlands Boulevard. South of the freeway, access to SR-60 would be provided via Alessandro Boulevard and Gilman Springs Road and via Eucalyptus Avenue and Redlands Boulevard. Additional intersection improvements are proposed along the detour routes to facilitate vehicle movement. As a result, widening is proposed at the Redlands Boulevard/Ironwood Avenue, WLC Pkwy/Alessandro Boulevard, and Alessandro Road Boulevard/Gilman Springs intersections. Consequently, signal modifications are proposed at the Redlands Boulevard/Ironwood Avenue and Redlands Boulevard/Eucalyptus Avenue intersections. A new signal would be installed at the Gilman Springs Road/Alessandro Boulevard intersection due to the high through movements on Gilman Springs Road conflicting with left turns to and from Alessandro Boulevard. The improvements required for the detour routes also include utility adjustments and/or relocations at Redlands Boulevard/Ironwood Avenue, WLC Pkwy/Alessandro Boulevard, and Alessandro Boulevard/Gilman Springs Road.

Project construction would also involve the import of soils to the project site from a borrow site. One borrow site, the City Stockpile, is located at the northwest corner of the intersection of Alessandro Boulevard and Nason Street, approximately 2.3 mi from the western boundary of the project site. Approximately 50,000 cubic yards of import material will be imported to the project from the City Stockpile borrow site. This project will exhaust the material available at the City City Stockpile, and grade out the area after removal. The City Stockpile will be environmentally cleared with this project. Additional fill material beyond the 50,000 cubic yards available from the City Stockpile will be necessary for the project and may come from another environmentally cleared borrow site to be determined during future phases of the project.

1.2 Need and Purpose

The purpose of the proposed project is to:

- 1. Provide increased interchange capacity, reduce congestion, and improve traffic operations to support the forecast travel demand for the 2045 design year;
- 2. Improve existing and projected interchange geometric deficiencies; and
- 3. Accommodate a multimodal facility that has harmony with the community and preserves the values of the area.

The proposed project is needed for the following reasons:

- According to the demographics and growth forecast prepared for the 2016 Southern California Association of Governments (SCAG) Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS), between 2012 and 2040, Riverside County's population is expected to increase by 41 percent, job growth is anticipated to increase by 90 percent, and households are anticipated to increase by 51 percent. For Moreno Valley specifically, between 2012-2040, population is anticipated to increase by 30 percent, household jobs are anticipated to increase by 165 percent, and households are anticipated to increase by 41 percent. Without improvements, in the year 2045, the eastbound and westbound on-and off- ramps are anticipated to operate at unacceptable levels of service (LOS) (LOS E in the a.m. peak hour and F in the p.m. peak hour, respectively) and the ramp intersections with WLC Pkwy are anticipated to operate at LOS F for both the a.m. and p.m. peak hours. The westbound mainline segment on SR-60 between WLC Pkwy and Redlands Boulevard is anticipated to operate at LOS E during the a.m. peak hour. The Theodore Street intersections with Ironwood Avenue, the SR-60 westbound and eastbound ramps, and Eucalyptus Avenue are forecast to operate at LOS F in the p.m. peak hour.
- The overpass bridge at the interchange was hit in January 2015 and a costly emergency repair project was required, so there is a need to bring vertical clearance up to current standards. In addition, the WLC Pkwy overcrossing is geometrically deficient and needs additional capacity to accommodate projected future travel volumes.
- This project will fulfill the need to accommodate the movement of people using multiple modes of transportation by community-based design taking into consideration the natural environment, social environment, transportation behavior, cultural characteristics and economic environment.

2.0 SAMPLING STRATEGY AND RATIONALE

The SR-60 and WLC Parkway Interchange Improvement project Preliminary Site Investigation was performed to investigate the recognized environmental conditions identified during the Initial Site Assessment (Leighton Consulting, 2018):

- Based on the historical use of some potential right-of-way properties for agricultural purposes, residual organochlorine pesticides (OCPs) and arsenical herbicides may exist in the subsurface soil.
- A soil stockpile from an unverified source is located southeast of the intersection of SR-60 and WLC Pkwy and is a partial right-of-way acquisition and slope easement parcel.

Based on the findings of the ISA, Leighton Consulting recommended:

- Soil sampling should be performed in proposed right-of-way acquisitions in areas of current and historical agriculture use to evaluate for OCPs and arsenical herbicides.
- Soil sampling should be performed in the proposed right-of-way and slope easement parcel in the area of the soil stockpile to evaluate for TPH, OCPs, and Title 22 metals.

3.0 PRE-FIELD ACTIVITIES

3.1 Health and Safety Plan

In accordance with standard environmental procedures, we prepared a Health and Safety Plan (HSP) describing safety aspects of the work to be performed at the Site. The HSP was prepared in compliance with the Occupational Safety and Health Administration (OSHA) regulation 29 CFR 1910.120 and reviewed by a certified industrial hygienist in accordance with Caltrans Guidelines (Caltrans, 2007c). The HSP contains information on chemical and physical hazards, emergency response plans, and information on routes to hospitals and emergency contacts. The site-specific HSP was on site during field activities and reviewed and signed by each of the site personnel.

3.2 Utilities

We contacted Underground Service Alert (USA) a minimum of 48 hours prior to the commencement of subsurface field activities as required by law. Our field personnel met with representatives of the utility services in the field to locate existing utility lines. Utility maps provided by the project engineer were loaded into global positioning system (GPS) software and utilized by field personnel during the investigation to evaluate potential utility conflicts. No utilities were encountered during field operations.

3.3 Encroachment Permit

An encroachment permit was issued for the fieldwork conducted within the existing Caltrans right-of-way. The encroachment permit number is referenced as 08-18-A-DP-0834 and is dated August 15, 2018, and expires on August 27, 2019. Due to the proposed sampling activities within APN 422-040-009, an entry permit was granted by Metropolitan Water District (MWD), owner of the property. The Entry Permit number is referenced as RL3343. We notified the inspector 10 days prior to field sampling activities per the permit requirements.

3.4 Traffic Control

Traffic control was not needed during the sampling activities for the PSI.

4.0 FIELD INVESTIGATION

4.1 Preliminary Site Investigation

On October 25, and November 10, 2018, field personnel observed and directed the advancement of 28 agricultural soil borings to a maximum depth of 2.5 feet below ground surface (bgs), and four soil stockpile borings to a maximum depth of 10.0 feet bgs within the unverified soil stockpile located in the eastern portion of the project area. The agricultural soil samples were collected from each soil boring at depths of 0.5, and 2.5 feet bgs, using a direct push drill rig or hand auger. The unverified soil stockpile soil samples were collected from each soil boring at depths of 0.5, 5.0 and 10.0 feet bgs using a direct push drill rig or hand auger.

4.2 Sample Collection

Level D Personal Protective Equipment (PPE) was worn during field activities. This equipment included work clothes, steel-toed boots, hard hats, and traffic vests. A new pair of latex or nitrile gloves was worn when collecting each sample. The soils were described and classified using the Unified Soil Classification System (USCS) and description of visible evidence of soil contamination (e.g., odor, staining) was recorded on the boring log by the field geologist during sampling activities. Soil sample logs have been provided in Appendix A. Boreholes were backfilled with bentonite chips and hydrated with tap water.

The location of each borehole was measured by GPS equipment. Horizontal coordinates were calculated within an accuracy of 3 feet and reported in decimal degree units in accordance with the North American Datum of 1983 (NAD 83). Boring locations are depicted on Figure 2. Coordinates of each borehole have been provided in Appendix B.

4.3 Equipment Decontamination

Non-dedicated sampling equipment (i.e., hand auger, direct push sampler) was decontaminated before and after each sample was collected using the following procedures:

- Detergent wash scrub in first 5-gallon bucket
- Potable water rinse in second 5-gallon bucket
- Distilled water rinse in third 5-gallon bucket
- Final distilled water rinse pumped or poured directly from distilled water container into the third 5-gallon bucket

The equipment decontamination station, consisting of three 5-gallon buckets, was located on the opposite side of the direct push drill rig away from the sample preparation area. Sampling equipment was placed on clean Visqueen to dry. Each 5-gallon bucket was contained on top of plastic sheeting.

4.4 Sampling Containers, Preservation, and Holding Times

A summary of the Sampling and Analysis Program is presented in Table 1. The direct push soil samples were collected in new acetate sleeves, which were cut at the appropriate sampling depth in the field with a decontaminated hacksaw and sealed with Teflon sheets and tight-fitting plastic end caps and labeled with sample point identification. Each sample was placed in an ice chest cooled to approximately 4 degrees Celsius for storage and transportation under chain-of-custody procedures to Enviro-Chem, Inc. (Enviro-Chem) in Pomona, California, a State of California Certified laboratory.

4.5 Sampling Handling and Storage

In the field, each sample container was marked prior to sample collection with the sampling location number, depth, date and time of sample collection, sampler's name, type of analysis, and preservative used. Each of the sample containers was wiped with clean paper towels, sealed in Ziploc bags, and securely packed in a cooler on ice in preparation for delivery to the laboratory.

4.6 Sample Custody

For each sample that was submitted to the laboratory for analysis, an entry was made on the chain-of-custody form supplied by the laboratory. The information recorded included the sampling date and time, sample identification number, matrix type, requested analyses and methods, preservatives, and the sampler's name. Sampling team members maintained custody of the samples until they were relinquished to laboratory personnel. The chain-of-custody form accompanied the samples from the time of collection until received by the laboratory. Each party taking possession of the samples signed the chain-of-custody form signifying receipt. A copy of the original completed forms was provided by the laboratory along with the report of results. Copies of the chain-of-custody forms have been provided with the laboratory reports in Appendix C.

5.0 LABORATORY ANALYSIS

5.1 Analytical Methods Requirements

Analytical procedures applicable to samples obtained from the site are presented below. The reporting limits (practical quantitation limit) for each analyte tested are provided in the laboratory reports provided in Appendix C. Enviro-Chem, Inc., is certified by the Department of Public Health, Environmental Laboratory Accreditation Program (ELAP), certificate number 1555, for each analytical method performed for this investigation.

5.2 **Preliminary Site Investigation**

5.2.1 Agricultural Investigation

On October 25, 2018, a total of 23 primary borings and 3 duplicate borings for a total of 26 borings were advanced at the previously selected locations within the right-of-way of the former agricultural portions of the project area. Borings were advanced to a depth of 2.5 feet and discrete soil samples were collected from each boring at the depths of 0.5 and 2.5 feet bgs using either a direct push drill rig or a hand auger, depending on boring location conditions.

On November 10, 2018, the remaining borings for sample locations P020 and P025 through P028 were advanced at the previously selected locations within the right-of-way of the former agricultural portions of the project area to a maximum depth of 2.5 feet bgs. Discrete soil samples were collected from each boring at the depths of 0.5 and 2.5 feet bgs using either a direct push drill rig or a hand auger, depending on boring location conditions.

The 0.5 foot samples were analyzed for OCPs by EPA Method 8081A, and arsenic by EPA Method 6010B. The deeper 2.5 foot samples were held pending the results of the surface samples.

5.2.2 Soil Stockpile Investigation

On November 10 2018, a total of 4 primary borings and 2 duplicate borings for a total of 6 borings were advanced in the unverified soil stockpile located in the southeast quadrant of the project site. Discrete soil samples were collected from each soil boring at depths of 0.5, 5.0, and 10.0 feet bgs using either a direct push drill rig or a hand auger, depending on boring location conditions.

The 0.5 foot samples were analyzed for OCPs by EPA Method 8081A, TPH by EPA Method 8015B, and Title 22 metals by EPA Methods 6010B/7471A. The deeper 2.5 foot samples were held pending the results of the surface samples.

6.0 QUALITY ASSURANCE PROJECT PLAN (QAPP)

We recognize that data quality comes from several different procedures, including field procedures, documentation procedures, and quality assurance/quality control (QA/QC) procedures. The necessary QA/QC procedures were performed in accordance with acceptable protocols. Sampling and analysis procedures, personnel requirements, chain-of-custody and documentation requirements, and specific criteria for evaluating data acceptability can be traceable.

We collected two types of QC samples: field duplicate samples and field equipment blank samples.

6.1 Field Duplicate Samples

Field duplicate samples were collected at a rate of 10% of the primary samples. Sets of samples (primary and duplicate) from a single source from adjacent borings were prepared, labeled with unique sample numbers, and submitted to the laboratory without cross-referencing data and without identification as duplicates on the parameter request sheet. Field duplicates were designated by adding 500-series numbers to the primary sample location numbers (e.g., A504-0.5).

6.2 Field Equipment Blanks

Field equipment blanks were prepared in the field to evaluate whether a sampling device (e.g., direct push sampler) had been effectively cleaned. The sampling device was decontaminated in accordance with the procedures described above. Metal-free, deionized water was then poured through the device, transferred to the appropriate sample bottles, preserved, and returned to the laboratory for analysis. One equipment blank was collected per sampling tool used at the site each day. The equipment blank was analyzed for constituents of concern. Equipment blanks were designated with E-series numbers and results are summarized on Table 2. Title 22 metals, OCPs, arsenic, and TPH were not reported above the practical quantitation limits (PQLs) in the equipment blanks analyzed.

6.3 Quality Control Soil Analysis Results

The analytical results of the field duplicates are summarized in Table 2. As a measure of sample precision, the analytical results of the field duplicates were compared to those of the co-located primary samples (Table 3).

Precision is expressed as the relative percent difference (RPD):

RPD = [(D1-D2)/{1/2(D1+D2)] X 100

Where D1 and D2 are the reported concentrations for the primary sample and duplicate analyses, respectively.

Sample results reported below the method detection limit are considered identical, and no RPD is calculated. Only sample results above the practical quantitation limit (PQL) are used in the RPD comparison.

6.3.1 <u>RPD</u>

The RPDs for the OCPs and Title 22 metals duplicate pairs reported above the PQL ranged from 1.41% to 52.2% (Table 5). A relative percent difference of less than 100% indicates good agreement between the reported concentrations of the primary soil samples and the duplicate soil samples.

7.0 RESULTS OF INVESTIGATION

This investigation includes the collection of 73 soil samples (including duplicate samples) from 32 soil borings in accordance with the approved workplan (Leighton, 2015b) during this investigation.

7.1 Agricultural Soil Samples

The 0.5 foot soil samples, collected from this investigation were analyzed for OCPs and arsenic, summarized in Tables 2 and 3. The samples collected at 2.5 feet bgs were held pending the analysis of the surficial soil samples.

7.1.1 <u>OCPs</u>

The OCP 4,4'-DDE was detected in 21 of the twenty soil samples analyzed at concentrations ranging from 0.001 milligrams per kilogram (mg/kg) to 0.108 mg/kg. The concentrations of 4,4'-DDE were each below their US EPA residential RSLs of 2.0 mg/kg.

7.1.2 Arsenic

Arsenic was detected in the soil samples at concentrations ranging from 1.68 mg/kg to 5.72 mg/kg. The reported concentrations of arsenic were above the US EPA's Regional Screening Level of 0.68 mg/kg and the DTSC HERO Note 3 screening value of 0.11 mg/kg, for human health risk scenarios for unrestricted land use (residential). The reported arsenic concentrations were below the DTSC established Southern California ambient background concentration of 12 mg/kg (DTSC, 2008; DTSC, 2016; EPA; 2018). Therefore, arsenic concentrations do not present a health hazard and are below the California and Federal hazardous waste criteria.

7.2 Unverified Soil Stockpile Soil Samples

Four soil borings were advanced using a direct push drill rig and/or hand auger to a depth of 10 feet bgs to assess the presence of impacts due to the unknown source of the stockpile (Figure 2). Soil samples were collected at 0.5, 5, and 10 feet bgs from each boring and analyzed for TPH, OCPs, and Title 22 metals.

7.2.1 <u>OCPs</u>

Organochlorine pesticides were not reported in concentrations above the laboratory reporting limit in the soil stockpile samples analyzed during our investigation (Table 2).

7.2.2 <u>Title 22 Metals</u>

Title 22 metals were not reported in concentrations above their respective US EPA residential RSLs with the exception of arsenic (Table 3). Arsenic was detected in the soil samples at concentrations ranging from 0.242J mg/kg to 2.59 mg/kg. The reported concentrations of arsenic were above the US EPA's RSL of 0.68 mg/kg and the DTSC HERO Note 3 screening value of 0.11 mg/kg, for unrestricted land use. The reported arsenic concentrations were below the DTSC established Southern California ambient background arsenic concentration of 12 mg/kg (DTSC, 2008; DTSC, 2016; EPA; 2018). Therefore, arsenic concentrations do not present a health hazard and are below the California and Federal hazardous waste criteria.

7.2.3 <u>TPH</u>

Total petroleum hydrocarbons were not reported in concentrations above the laboratory reporting limit in the soil stockpile samples analyzed during our investigation (Table 4).

8.0 CONCLUSIONS AND RECOMMENDATIONS

The soil samples for the Preliminary Site Investigation reported arsenic concentrations ranging from 1.68 mg/kg to 5.72 mg/kg. The reported concentrations of arsenic were above the US EPA's RSLs and the DTSC HERO Note 3 screening value for unrestricted land use. The reported arsenic concentrations were below the DTSC established Southern California ambient background arsenic concentration of 12 mg/kg (DTSC, 2008; DTSC, 2016; EPA; 2018). Therefore, arsenic concentrations do not present a health hazard and are below the California and Federal hazardous waste criteria. The reported concentrations of Title 22 metals and OCPs were below the US EPA's RSLs and the DTSC HERO Note 3 screening value, for unrestricted land use. Total petroleum hydrocarbons were not reported above the laboratory reporting limits in the soil samples analyzed during this investigation.

The most recent ADL Survey was completed by Leighton in 2016 (Leighton, 2018b). A previous ADL survey was completed by Leighton in 2008 (Leighton, 2008). Based on the ADL Surveys data and statistical analyses, tested soil does not represent significant environmental or health hazards and, according to the DTSC draft soil management agreement, the soil located along SR-60 does not meet the definition of ADL-contaminated soil, and can be reused on site. Per the draft soil management agreement, the DTSC must be notified of the project, and a Lead Compliance Plan is required for worker safety.

In addition a hazardous material survey has been completed and presented in a separate report completed by Vista Environmental including (Leighton, 2019):

- An asbestos survey on the WLC Pkwy bridge structure which is proposed to be modified as a result of this project. The HAZMAT report stated that asbestoscontaining material was not present in the bridge structure (Leighton, 2019).
- A lead-based paint survey on the WLC Pkwy bridge structure which is proposed to be modified as a result of this project. The HAZMAT report stated that lead-based paint materials containing lead above 600 mg/kg were not detected in the paint sampled within the project area (Leighton, 2019).
- Sampling and analysis of yellow striping performed in accordance with Construction Program Procedure Bulletin 99-2 (Caltrans, 2006). The HAZMAT report stated that yellow pavement striping observed in the median of the World Logistics Center Parkway (formally Theodore Street) contained lead at a maximum concentration of 220 mg/kg and chromium at a maximum concentration of 3.9 mg/kg (Leighton,

2017b). Recommendations and requirements for the yellow-striping paint were explained in the HAZMAT report (Leighton, 2019).

Based on the results of the soil samples collected during the Preliminary Site Investigation, the ADL survey and the samples collected during the HAZMAT survey, a soil management plan is not recommended.

9.0 REFERENCES

- California Department of Transportation, 2007a, Caltrans environmental reporting guidance, June 2007.
- California Department of Transportation, 2007b, Caltrans hazardous waste site field health & safety guidance, June 2007.
- California Department of Transportation, 2007c, Caltrans remediation guidance, June 2007.
- California Department of Transportation, 2007d, Caltrans site investigation guidance, June 2007.
- California Department of Transportation, 2006, Project development procedures manual, Chapter 18, February 28, 2006.
- California Environmental Protection Agency, Department of Toxic Substances Control (DTSC), 2016a, Soil Management Agreement for Preliminary Site Assessment-Contaminated Soils, Department of Toxic Substances Control, May 2016.
- Leighton and Associates, Inc., 2008, Aerially Deposited Lead (ADL) Survey Report, SR-60 East Bound Widening Between Theodore Street and Redlands Boulevard, Moreno Valley, Riverside County, California, Project Number 111061-115, dated August 22, 2008. (included as Appendix D)
- Leighton Consulting, Inc., 2015a, Health and Safety Plan, SR-60/Theodore Street Interchange Project, Aerially Deposited Lead Survey and Preliminary Site Investigation, Project Number 10326.001, dated July 15, 2015.
- Leighton Consulting, Inc., 2015b, Draft Aerially Deposited Lead and Preliminary Site Investigation Workplan, SR-60/Theodore Street Interchange Project, Riverside County, California, 08-RIV-60-PM 20.0/22.0, EA 0M590, dated November, 2015.
- Leighton Consulting, Inc., 2015c, Initial Site Assessment, SR-60/Theodore Street Interchange Project, Riverside County California, 08-RIV-60-PM 20.0/22.0, EA 0M5900, dated December 2015.
- Leighton Consulting, Inc., 2018a, Initial Site Assessment, SR-60/World Logistics Center Parkway Interchange Project, Riverside County California, 08-RIV-60-PM 20.0/22.0, EA 0M5900, dated December 2018. Update.
- Leighton Consulting, Inc., 2018b, Aerially Deposited Lead Survey, SR-60/World Logistics Center Parkway Interchange Project, Riverside County California, 08-RIV-60-PM 20.0/22.0, EA 0M5900, dated December 2018. Update.

- State of California, Environmental Protection Agency, California Department of Toxic Substances Control, 2009, Generation, Manifest, Transportation, Storage and Disposal Variance, Variance NO. V09HQSCD006 for Caltrans July 1, 2009.
- State of California, Environmental Protection Agency, California Department of Toxic Substances Control, 2015. Extension of Statewide Variance NO. VO9HQSCD006 for Caltrans November 30, 2015.
- United States Environmental Protection Agency (EPA), 2007, Test methods for evaluating solid waste, physical/chemical methods (SW-846).

Map Saved as P:\Drafting\10326\001\10326_001_F01_SLM_2018-10-16mxd.mxd on 10/16/2018 10:58:37 AM

o Saved as P:\Drafting\10326\001\Maps\10326-001_F02c_SLM-DV2a_2019-02-07.mxd on 2/7/2019 4:41:11 PM

o Saved as P:\Drafting\10326\001\Maps\10326-001_F02d_SLM-DV6a_2019-02-07.mxd on 2/7/2019 4:33:44 PM

TABLE 1 SUMMARY OF SAMPLING AND ANALYSES PROGRAM SR-60/WLC Interchange Improvement Project Moreno Valley Riverside County, California

Sample Location/	General	Test Method	Container	Preservative	Holding Time
Number	Parameters	of Analyses	Container	Treservative	riolaling rime
Historical Agricultural Areas					
Fifty six (56) soil samples were collected at the depths of 0.5 and 2.5 feet bgs (P001 through P028) The soil samples were collected in the historical agricultural areas located within the	OCPs	EPA 8081A	Acetate Sleeve	4 °C	14 days to extraction, 40 days to analysis 180 days
and slope easement parcels. The soil samples were analyzed for organochlorine pesticides (OCPs) by EPA Method 8081A and arsenic by EPA Method 6010B. The twenty eight 2.5-foot bgs soil samples were held pending the initial laboratory analysis.	Arsenic	EPA 6010B	Acetate Sleeve	4 °C	
Soil Stockpile					
Twelve soil samples were collected from four locations (SS001 through SS004). Soil samples were collected from depths of 0.5 fact 5.0 fact and 10.0 fact back. The soil	OCPs	EPA 8081A	Acetate sleeve	4 °C	14 days to extraction, 40 days to analysis
samples were analyzed for total petroleum hydrocarbons (TPH) carbon chain (C6 through C40), OCPs, and metals.	CAM-17 Metals	EPA 6010B/7471A	Acetate sleeve	4 °C	180 days (28 days mercury)
	TPH (C6 through C40)	EPA 8015B	Acetate sleeve	4 °C	14 days to extraction, 40 days to analysis

TABLE 1 SUMMARY OF SAMPLING AND ANALYSES PROGRAM SR-60/WLC Interchange Improvement Project Moreno Valley Riverside County, California

QA/QC SAMPLES					
Samula Decarintian	General	Test Method	Quantationa	Descention	Halling Times
Sample Description	Parameters	of Analyses	Container	Preservative	Holding Time
Duplicate Samples were collected at a minimum 10% rate of the primary samples. Twelve duplicate samples were collected from	OCPs	EPA 8081A	Acetate sleeve/4 oz. glass jar	4 °C	14 days to extraction, 40 days to analysis
analyzed for OCPs and arsenic.	Arsenic	EPA 6010B	Acetate sleeve/4 oz.	4 °C	180 days
I hree duplicate samples were collected from the historical agricultural area borings			glass jar		180 days
Samples were analyzed for OPCs and arsenic.	CAM-17 Metals	EPA 6010B/7471A	Acetate	4 °C	(28 days mercury)
Two duplicate soil samples were collected from the soil stockpile area. Samples were			glass jar		14 days to extraction, 40 days to analysis
analyzed for TPH, OCPs, and metals.	TPH (C6 through C40)	EPA 8015B	Acetate sleeve/4 oz.	4 °C	
Field duplicate samples were designated with 500-series numbers (e.g., P504-0.5).			glass jar		
Equipment Blanks were collected at the end of each sampling day by pouring distilled water	OCPs	EPA 8081A	1 L amber glass	NA2S2O3	14 days to extraction, 40 days to analysis
through each decontaminated sampling device and collecting the water in an appropriate	Arsenic	EPA 6010B	250 ml HDPE	HNO3	180 days
were designated as E-series (e.g., E046, E047).	CAM-17 Metals	EPA 6010B/7471A	250 ml HDPE	HNO₃	180 days
,	TPH (C6 through C40)	EPA 8015B	500 ml amber glass	HCI	(28 days mercury)
					14 days to extraction, 40 days to analysis

Table 2 Summary of OCPs in Soil SR-60/WLC Interchange Improvement Project Moreno Valley Riverside County, California

Sample Number (Depth in Feet)	Sample Date	Aldrin	alpha- BHC	beta- BHC	Lindane	delta- BHC	alpha- Chlordane	gamma- Chlordane	Technical Chlordane	4,4'-DDD	4,4'-DDE	4,4'-DDT	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan Sulfate	Endrin	Endrin Aldehyde
(Deptir in reet)													(mg/k	g)				
Agricultural Inve	stigation		•		•					.	•				•			
P001-0.5	10/25/2018	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.010	< 0.002	0.010	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
P002-0.5	10/25/2018	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.020	< 0.004	0.012	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
P003-0.5	10/25/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
P004-0.5	10/25/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
P005-0.5	10/25/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	0.0009J	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
P006-0.5	10/25/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
P007-0.5	10/25/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
P008-0.5	10/25/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
P009-0.5	10/25/2018	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.050	< 0.010	0.051	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
P010-0.5	10/25/2018	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.250	< 0.050	0.092	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
P011-0.5	10/25/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
P012-0.5	10/25/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
P013-0.5	10/25/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	0.00099J	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
P014-0.5	10/25/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
P015-0.5	10/25/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	0.006J	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
P016-0.5	10/25/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	0.003	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
P017-0.5	10/25/2018	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.100	< 0.020	0.108	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
P018-0.5	10/25/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	0.003	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
P019-0.5	10/25/2018	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.250	< 0.050	0.082	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
P020-0.5	10/25/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
P021-0.5	10/25/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	0.0006J	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
P022-0.5	10/25/2018	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.050	< 0.010	0.012	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
P023-0.5	10/25/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
P024-0.5	10/25/2018	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.010	< 0.002	0.006	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
P025-0.5	11/10/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
P026-0.5	11/10/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
P027-0.5	11/10/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
P028-0.5	11/10/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Soil Stockpile In	vestigation	0.004	0.004	0.004	0.004	0.004	0.001	0.004			0.004	0.004	0.004		0.001	0.004	0.004	0.004
MWD1-0.5	11/10/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
MWD1-5.0	11/10/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
MWD1-10.0	11/10/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
MWD2-0.5	11/10/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
MWD2-5.0	11/10/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
MVVD2-10.0	11/10/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
MVVD3-0.5	11/10/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
MVVD3-5.0	11/10/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	11/10/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	11/10/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	11/10/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	<u> 0.001 </u>	< 0.001	< 0.001	< 0.001	< 0.001
10.0	11/10/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<u> </u>	< 0.001	< U.UU5	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

E K	Endrin eytone	He	eptachlor Epoxide	He	eptachlor	Ме	ethoxyclor	То	oxaphene	DF
<	0.002	<	0.002	<	0.002	<	0.002	<	0.040	2
<	0.004	<	0.004	<	0.004	<	0.004	<	0.080	4
<	0.001	<	0.001	<	0.001	<	0.001	<	0.020	1
<	0.001	<	0.001	<	0.001	<	0.001	<	0.020	1
<	0.001	<	0.001	<	0.001	<	0.001	<	0.020	1
<	0.001	<	0.001	<	0.001	<	0.001	<	0.020	1
<	0.001	<	0.001	<	0.001	<	0.001	<	0.020	1
<	0.001	< 0.001		<	0.001	<	0.001	<	0.020	1
<	0.010	<	< 0.010		0.010	<	0.010	<	0.200	10
۷	0.050	<	0.050	<	0.050	<	0.050	<	1.000	50
<	0.001	<	0.001	<	0.001	<	0.001	<	0.020	1
<	0.001	<	0.001	<	0.001	<	0.001	<	0.020	1
<	0.001	<	0.001	<	0.001	<	0.001	<	0.020	1
<	0.001	<	0.001	<	0.001	<	0.001	<	0.020	1
۷	0.001	<	0.001	<	0.001	<	0.001	<	0.020	1
۷	0.001	<	0.001	<	0.001	<	0.001	<	0.020	1
۷	0.020	۷	0.020	<	0.020	<	0.020	<	0.400	20
<	0.001	<	0.001	<	0.001	۷	0.001	<	0.020	1
۷	0.050	<	0.050	<	0.050	۷	0.050	<	1.000	50
<	0.001	<	0.001	<	0.001	۷	0.001	<	0.020	1
<	0.001	<	0.001	<	0.001	۷	0.001	<	0.020	1
<	0.010	<	0.010	<	0.010	۷	0.010	<	0.200	10
<	0.001	<	0.001	<	0.001	<	0.001	<	0.020	1
<	0.002	<	0.002	<	0.002	<	0.002	<	0.040	2
<	0.001	<	0.001	<	0.001	<	0.001	<	0.020	1
<	0.001	<	0.001	<	0.001	<	0.001	<	0.020	1
<	0.001	<	0.001	<	0.001	<	0.001	<	0.020	1
۷	0.001	<	0.001	<	0.001	۷	0.001	<	0.020	1
<	0.001	<	0.001	<	0.001	<	0.001	<	0.020	1
<	0.001	<	0.001	<	0.001	<	0.001	<	0.020	1
<	0.001	<	0.001	<	0.001	<	0.001	<	0.020	1
<	0.001	<	0.001	<	0.001	<	0.001	<	0.020	1
<	0.001	<	0.001	<	0.001	<	0.001	<	0.020	1
<	0.001	<	0.001	<	0.001	<	0.001	<	0.020	1
<	0.001	<	0.001	<	0.001	<	0.001	<	0.020	1
<	0.001	<	0.001	<	0.001	<	0.001	<	0.020	1
<	0.001	<	0.001	<	0.001	<	0.001	<	0.020	1
<	0.001	< 0.001		<	0.001	<	0.001	<	0.020	1
<	0.001	<	0.001	<	0.001	<	0.001	<	0.020	1
<	0.001	<	0.001	<	0.001	<	0.001	<	0.020	1

Table 2 Summary of OCPs in Soil SR-60/WLC Interchange Improvement Project Moreno Valley Riverside County, California

Sample Number (Depth in Feet)	Sample Date	Aldrin	alpha- BHC	beta- BHC	Lindane	delta- BHC	alpha- Chlordane	gamma- Chlordane	Technical Chlordane	4,4'-DDD	4,4'-DDE	4,4'-DDT	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan Sulfate	Endrin	Endrin Aldehyde	Endrin Keytone	Heptachlor Epoxide	Heptachlor	Methoxyclor	Toxaphene	DF
													(mg/k	g)										
Duplicate Soil Sa																								
P504-0.5	10/25/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	0.0006J	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.020	1
P512-0.5	10/25/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.020	1
P519-0.5	10/25/2018	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.250	< 0.050	0.108	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 1.000	50
P528-0.5	10/25/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.020	1
MWD501-5.0	11/10/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.020	1
MWD504-5.0	11/10/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.020	1
Equipment Blan	k																							
E001	10/25/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.020	1
E001	11/10/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.020	1
Maximum Site Co	oncentration										0.108													
Residential RSLs	S	0.039	0.086	0.3	0.57	NE	NE	NE	1.7	2.3	2.0	1.9	0.034	470	NE	NE	19	NE	NE	0.070	0.13	320	0.49	-
Commercial/Indu	istrial RSLs	0.18	0.36	1.3	2.5	NE	NE	NE	7.7	9.6	9.3	8.5	0.14	7,000	NE	NE	250	NE	NE	0.33	0.63	4100	2.1	-
NOTEO.																								

NOTES: Bolded analytical results are above the method detection limit

RSL = US EPA Region IX Regional Screening Levels November 2017 J = Indicates a trace concentration between method detection limit and practical quantitation limit

mg/kg = milligrams per kilogram <0.001 = analyte not detected above practical quantitation limit

Blue highlighted cells indicate concentrations above RSLs NE = None Established

BHC = Benzene hexachloride

Table 3Summary of Metals in SoilSR-60/WLC Interchange Improvement Project
Moreno Valley
Riverside County, California

Sample Number	Sample Date	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium Total	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	DF
(Depth in Feet)	-									(mg/kg)									
Agricultural Investi	gation																		
P001-0.5	10/25/2018	-	1.78	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
P002-0.5	10/25/2018	-	2.15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
P003-0.5	10/25/2018	-	1.68	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
P004-0.5	10/25/2018	-	1.80	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
P005-0.5	10/25/2018	-	3.38	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
P006-0.5	10/25/2018	-	1.84	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
P007-0.5	10/25/2018	-	2.14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
P008-0.5	10/25/2018	-	5.72	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
P009-0.5	10/25/2018	-	2.34	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
P010-0.5	10/25/2018	-	2.51	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
P011-0.5	10/25/2018	-	1.69	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
P012-0.5	10/25/2018	-	2.10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
P013-0.5	10/25/2018	-	2.33	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
P014-0.5	10/25/2018	-	2.66	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
P015-0.5	10/25/2018	-	2.76	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
P016-0.5	10/25/2018	-	2.83	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
P017-0.5	10/25/2018	-	3.32	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
P018-0.5	10/25/2018	-	3.09	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
P019-0.5	10/25/2018	-	3.18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
P020-0.5	11/10/2018	-	2.32	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
P021-0.5	10/25/2018	-	2.93	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
P022-0.5	10/25/2018	-	2.71	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
P023-0.5	10/25/2018	-	2.13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
P024-0.5	10/25/2018	-	2.20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
P025-0.5	11/10/2018	-	2.29	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
P026-0.5	11/10/2018	-	2.68	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
P027-0.5	11/10/2018	-	3.22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
PU28-U.5	11/10/2018	-	4.44	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Soli Stockpile Inves	stigation	1 00	0 0 <i>(</i> 0 <i>(</i>	50 7	0.50	0.50		(0.0	(5.0	0.54	. 0.04	5.00	44 -	4.00	1 1 00	1.00	00 T	10 7	
MWD1-0.5	11/10/2018	< 1.00	0.242J	58.7	< 0.50	< 0.50	32.8	10.6	15.9	2.51	< 0.01	< 5.00	11.7	< 1.00	< 1.00	< 1.00	60.7	46.7	1
MWD1-5.0	11/10/2018	< 1.00	2.06	38.3	< 0.50	< 0.50	14.2	6.33	11.8	5.22	< 0.01	< 5.00	7.14	< 1.00	< 1.00	< 1.00	28.5	35.4	
	11/10/2018	< 1.00	2.59	68.1	< 0.50	< 0.50	33.3	8.95	10.0	3.53	< 0.01	< 5.00	17.0	< 1.00	< 1.00	< 1.00	37.0	45.0	
	11/10/2018	< 1.00	0.64	57.3	< 0.50	< 0.50	35.9	10.6	16.0	3.16	< 0.01	< 5.00	14.9	< 1.00	< 1.00	< 1.00	50.1	49.2	1
	11/10/2018	< 1.00	0.728	41.6	< 0.50	< 0.50	25.9	9.25	17.9	2.54	< 0.01	< 5.00	10.7	< 1.00	< 1.00	< 1.00	48.0	42.3	
	11/10/2010	 1.00 1.00 	2.22	3U.Ŏ /c c	< 0.50	< 0.50	10.3	4.01	0.3/	2.34 E 0E			0.44 0.21	< 1.00 < 1.00	< 1.00 < 1.00	 1.00 	20.7	24.2	
	11/10/2010	 1.00 1.00 	2.3/	40.0	< 0.50	< 0.50	10.7	0.89	12.0	J.ØJ		> 0.00	0.21	 1.00 1.00 	< 1.00 < 1.00	 1.00 	31./	37.0	
	11/10/2010	< 1.00 < 1.00	2.3/	41.5		< 0.50	10.9	0.ŏ4 E 10	12.1	2.00			0.43 E E 1	< 1.00 < 1.00	< 1.00	> 1.00	32.1	32.0 27 5	
	11/10/2010	< 1.00	<u> 2.2</u> 0	54.0 67 A		< 0.50	13.1	0.49	9.20 10 0	Z.4Z		< 5.00 < 5.00	0.01	< 1.00	< 1.00	< 1.00 < 1.00	24.2	<u> 21.3</u> 50.2	
	11/10/2010	< 1.00	2.30	07.4 22 A		< 0.50	21.0 0.62	9.10 2.00	10.Z	1 70		< 5.00 < 5.00	/ 70	< 1.00 < 1.00	< 1.00	< 1.00	39.1 17 0	20.2 22.9	
	11/10/2010	< 1.00	1.47	23.4		< 0.50	<i>3.02</i>	3.99	7.00	1.70		< 5.00 < 5.00	4.19	< 1.00	< 1.00	< 1.00 < 1.00	11.0	22.0	
101004-10.0	11/10/2010	< I.00	Z.19	24.5	► 0.50	> 0.50	9.07	4.09	7.Uð	1.70	○.01	> 0.00	4.38	► 1.00	► 1.00	l > 1.00	10.0	21.5	
Table 3 Summary of Metals in Soil SR-60/WLC Interchange Improvement Project Moreno Valley Riverside County, California

Sample Number	Sample Date	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium Total	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	DF
(Depth in Feet)										(mg/kg)									
Duplicate Soil Sam	ples																		
P504-0.5	10/25/2018	-	1.84	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
P512-0.5	10/25/2018	-	2.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
P519-0.5	10/25/2018	-	3.72	-	-	-	-	-	-	I	-	-	I	-	-	-	-	-	1
P528-0.5	10/25/2018	-	5.24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
MWD501-5.0	11/10/2018	< 1.00	1.71	42.7	< 0.50	< 0.50	16.1	6.52	10.9	3.88	< 0.010	< 5.00	7.57	< 1.00	< 1.00	< 1.00	28.1	36.2	1
MWD504-5.0	11/10/2018	< 1.00	2.26	35.2	< 0.50	< 0.50	13.4	5.48	11.6	2.90	< 0.010	< 5.00	6.33	< 1.00	< 1.00	< 1.00	24.6	28.8	1
Equipment Blank																			
E001	10/25/2018	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1
E001	11/10/2018	<	v	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1
Maximum Site Con	centration	-	5.72	68.1	-	-	35.9	10.6	18.2	5.85	-	-	17.6	-	-	-	60.7	49.2	-
DTSC Background	Concentration*	-	12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Residential RSLs		31	0.068	15,000	1,600	2,100	NE	420	3,100	82	11	390	15,000	390	390	0.78	390	2,300	-
Commercial/Indust	trial RSLs	470	3.0	220,000	6,900	9,300	NE	1,900	47,000	800	46	5,800	64,000	5,800	5,800	12	5800	350,000	-

NOTES:

Bolded analytical results are above the method detection limit

RSL = US EPA Region IX Regional Screening Levels May 2018

J = Indicates a trace concentration between method detection limit and practical quantitation limit

Blue highlighted cells indicate concentrations above RSLs

NE = None Established

<0.50 = analyte not detected above practical quantitation limit

* = Department of Toxic Control Ambient Southern California Background Arsenic Concentration

mg/kg = milligrams per kilogram

Leighton Consulting, Inc SR-60/WLC Interchange Project RBF Consulting/Michael Baker International March 2019

Table 4Summary of TPH in SoilSR-60/WLC Interchange Improvement ProjectMoreno ValleyRiverside County, California

Sample ID	Depth (feet)	Date	C4 - C-10 (mg/kg)	C11 - C22 (mg/kg)	C23-C35 (mg/kg)	DF
Soil Stockpile	Investigatio	on	-			
MWS1-0.5	0.5	11/10/2018	<10.0	<10.0	<50.0	1
MWD1-5.0	5.0	11/10/2018	<10.0	<10.0	<50.0	1
MWD1-10.0	10.0	11/10/2018	<10.0	<10.0	<50.0	1
MWD2-0.5	0.5	11/10/2018	<10.0	<10.0	<50.0	1
MWD2-5.0	5.0	11/10/2018	<10.0	<10.0	<50.0	1
MWD2-10.0	10.0	11/10/2018	<10.0	<10.0	<50.0	1
MWD3-0.5	0.5	11/10/2018	<10.0	<10.0	<50.0	1
MWD3-5.0	5.0	11/10/2018	<10.0	<10.0	<50.0	1
MWD3-10.0	10.0	11/10/2018	<10.0	<10.0	<50.0	1
MWD4-0.5	0.5	11/10/2018	<10.0	<10.0	<50.0	1
MWD4-5.0	5.0	11/10/2018	<10.0	<10.0	<50.0	1
MWD4-10.0	10.0	11/10/2018	<10.0	<10.0	<50.0	1
QA/QC Field Duplicates						
MWD501-5.0	5.0	11/10/2018	<10.0	<10.0	<50.0	1
MWD504-5.0	5.0	11/10/2018	<10.0	<10.0	<50.0	1
Equipment Bla	ank					
100-1	-	11/10/2018				-
Maximum Site	e Concentra	tion	<10.0	<10.0	<50.0	-
US EPA RSL (aromatic co	ommercial)	420	600	33,000	-
US EPA RSL (aliphatic co	ommercial)	2,200	440	3,500,000	-

US EPA RSL (residential) = US Environmental Protection Agency Regional Screening Levels for residential land use

mg/kg = milligrams per kilogram

<5.0 = analyte not detected above designated method detection limit

-- = Not analyzed

C4 - C10 = Gasoline Range Organic Compounds

C11 - C22 = Diesel Range Organic Compounds

C23 - C35 = Oil Range Organic Compounds

Leighton Consulting, Inc SR-60/WLC Interchange Project RBF Consulting/Michael Baker International March 2019

Table 5Relative Percent DifferenceSR-60/WLC Interchange Improvement Project
Moreno Valley
Riverside County, California

Boring ID	Analyte	Primary Sample (mg/kg)	Duplicate Sample (mg/kg)	Relative Percent Difference
Agricultural Investigation	on			
P004-0.5/P504-0.5	Arsenic	1.80	1.84	2.20
P012-0.5/P512-0.5	Arsenic	2.10	2.05	2.41
P019-0.5/P519-0.5	Arsenic	3.18	3.72	15.7
P028-0.5/P528-0.5	Arsenic	4.44	5.24	16.5
P004-0.5/P504-0.5	4,4'DDE	0.0010	0.0006	50.0
P019-0.5/P519-0.5	4,4'DDE	0.082	0.108	27.4
Unverified Soil Stockpil	e Investigation			
MWD1-5.0/MWD501-5.0	Arsenic	2.06	1.71	18.6
MWD1-5.0/MWD501-5.0	Barium	38.3	42.7	10.9
MWD1-5.0/MWD501-5.0	Chromium Total	14.2	16.1	12.5
MWD1-5.0/MWD501-5.0	Cobalt	6.33	6.52	2.96
MWD1-5.0/MWD501-5.0	Copper	11.8	10.9	7.93
MWD1-5.0/MWD501-5.0	Lead	5.22	3.88	29.5
MWD1-5.0/MWD501-5.0	Nickel	7.14	7.57	5.85
MWD1-5.0/MWD501-5.0	Vanadium	28.5	28.1	1.41
MWD1-5.0/MWD501-5.0	Zinc	22.8	28.8	23.3
MWD4-5.0/MWD504-5.0	Arsenic	1.47	2.26	42.4
MWD4-5.0/MWD504-5.0	Barium	23.4	35.2	40.3
MWD4-5.0/MWD504-5.0	Chromium Total	9.62	13.4	32.8
MWD4-5.0/MWD504-5.0	Cobalt	3.99	5.48	31.5
MWD4-5.0/MWD504-5.0	Copper	6.47	11.6	56.8
MWD4-5.0/MWD504-5.0	Lead	2.90	1.70	52.2
MWD4-5.0/MWD504-5.0	Nickel	4.79	6.33	27.7
MWD4-5.0/MWD504-5.0	Vanadium	17.0	24.6	36.5
MWD4-5.0/MWD504-5.0	Zinc	35.4	36.2	2.23

Notes:

RPD = Relative Percent Difference

J = Result is between the laboratory method detection limit (MDL) and the practical quantitation limit (PQL) mg/kg = milligrams/kilogram

= denotes RPD above 100 indicating poor precision

Samples with one or more non-detect result, the RPD could not be calculated

APPENDIX A

Appendix A Soil Sample Log SR-60/WLC Interchange Improvement Project Moreno Valley Riverside County, California

Sample No.	USCS ¹ Symbol	Soil Type	Angularity ²	Color	Moisture ³	Grain Size ⁴	Plasticity ⁵	Comments ⁶
Agricultural Invest	igation							
P001-0.5	ML	Sandy Silt	Sub-rounded	light brown	dry	fine to medium	non-plastic	None
P001-2.5	ML	Sandy Silt	Sub-rounded	light brown	slighty moist	fine to medium	non-plastic	None
P002-0.5	ML	Sandy Silt	Sub-rounded	light brown	dry	fine to medium	non-plastic	None
P002-2.5	ML	Sandy Silt	Sub-rounded	light brown	slighty moist	fine to medium	non-plastic	None
P003-0.5	ML	Sandy Silt	Sub-rounded	light brown	dry	fine to medium	non-plastic	None
P003-2.5	ML	Sandy Silt	Sub-rounded	light brown	slighty moist	fine to medium	non-plastic	None
P004-0.5	ML	Sandy Silt	Sub-rounded	light brown	dry	fine to medium	non-plastic	None
P004-2.5	ML	Sandy Silt	Sub-rounded	light brown	slighty moist	fine to medium	non-plastic	None
P005-0.5	ML	Sandy Silt	Sub-rounded	light brown	dry	fine to medium	non-plastic	None
P005-2.5	ML	Sandy Silt	Sub-rounded	light brown	slighty moist	fine to medium	non-plastic	None
P006-0.5	ML	Sandy Silt	Sub-rounded	light brown	dry	fine to medium	non-plastic	None
P006-2.5	ML	Sandy Silt	Sub-rounded	light brown	slighty moist	fine to medium	non-plastic	None
P007-0.5	ML	Sandy Silt	Sub-rounded	light brown	dry	fine to medium	non-plastic	None
P007-2.5	ML	Sandy Silt	Sub-rounded	light brown	slighty moist	fine to medium	non-plastic	None
P008-0.5	ML	Sandy Silt	Sub-rounded	light brown	dry	fine to medium	non-plastic	None
P008-2.5	ML	Sandy Silt	Sub-rounded	light brown	slighty moist	fine to medium	non-plastic	None
P009-0.5	ML	Sandy Silt	Sub-rounded	light brown	dry	fine to medium	non-plastic	None
P009-2.5	ML	Sandy Silt	Sub-rounded	light brown	slighty moist	fine to medium	non-plastic	None
P010-0.5	ML	Sandy Silt	Sub-rounded	light brown	dry	fine to medium	non-plastic	None
P010-2.5	SM	Silty Sand	Sub-angular to sub-rounded	light brown	slighty moist	fine to coarse	non-plastic	with some trace fine gravel
P011-0.5	ML	Sandy Silt	Sub-rounded	light brown	dry	fine to medium	non-plastic	None
P011-2.5	SM	Silty Sand	Sub-angular to sub-rounded	light brown	slighty moist	fine to coarse	non-plastic	with some trace fine gravel
P012-0.5	ML	Sandy Silt	Sub-rounded	light brown	dry	fine to medium	non-plastic	None
P012-2.5	SM	Silty Sand	Sub-angular to sub-rounded	light brown	slighty moist	fine to coarse	non-plastic	with some trace fine gravel
P013-0.5	ML	Sandy Silt	Sub-rounded	light brown	dry	fine to medium	non-plastic	with some vegetation
P013-2.5	SM	Silty Sand	Sub-angular to sub-rounded	brown	slighty moist	fine to coarse	non-plastic	None
P014-0.5	SM	Silty Sand	Sub-angular to sub-rounded	light brown	dry	fine to coarse	non-plastic	with some vegetation
P014-2.5	SM	Silty Sand	Sub-angular to sub-rounded	brown	slighty moist	fine to coarse	non-plastic	None
P015-0.5	SM	Silty Sand	Sub-angular to sub-rounded	light brown	dry	fine to coarse	non-plastic	with some vegetation
P015-2.5	SM	Silty Sand	Sub-angular to sub-rounded	brown	slighty moist	fine to coarse	non-plastic	None
P016-0.5	SM	Silty Sand	Sub-angular to sub-rounded	light brown	dry	fine to coarse	non-plastic	with some vegetation
P016-2.5	SM	Silty Sand	Sub-angular to sub-rounded	brown	slighty moist	fine to coarse	non-plastic	None
P017-0.5	SM	Silty Sand	Sub-angular to sub-rounded	light brown	dry	fine to coarse	non-plastic	with some vegetation
P017-2.5	SM	Silty Sand	Sub-angular to sub-rounded	brown	slighty moist	fine to coarse	non-plastic	None
P018-0.5	ML	Sandy Silt	Sub-rounded	light brown	dry	fine to medium	non-plastic	with some vegetation
P018-2.5	SM	Silty Sand	Sub-angular to sub-rounded	light brown	slighty moist	fine to coarse	non-plastic	with some trace fine gravel
P019-0.5	ML	Sandy Silt	Sub-rounded	light brown	dry	tine to medium	non-plastic	with some vegetation
P019-2.5	SM	Silty Sand	Sub-angular to sub-rounded	light brown	slighty moist	tine to coarse	non-plastic	with some trace fine gravel
P020-0.5	ML	Sandy Silt	Sub-rounded	light brown	dry	tine to medium	non-plastic	with some vegetation
P020-2.5	SM	Silty Sand	Sub-angular to sub-rounded	light brown	slighty moist	tine to coarse	non-plastic	with some trace fine gravel
P021-0.5	ML	Sandy Silt	Sub-rounded	light brown	dry	tine to medium	non-plastic	with some vegetation

Appendix A Soil Sample Log SR-60/WLC Interchange Improvement Project Moreno Valley Riverside County, California

Sample No.	USCS ¹ Symbol	Soil Type	Angularity ²	Color	<i>Moisture</i> ³	Grain Size ⁴	Plasticity ⁵	Comments ⁶
P021-2.5	SM	Silty Sand	Sub-angular to sub-rounded	light brown	slighty moist	fine to coarse	non-plastic	with some trace fine gravel
P022-0.5	ML	Sandy Silt	Sub-rounded	light brown	dry	fine to medium	non-plastic	with some vegetation
P022-2.5	SM	Silty Sand	Sub-angular to sub-rounded	light brown	slighty moist	fine to coarse	non-plastic	with some trace fine gravel
P023-0.5	ML	Sandy Silt	Sub-rounded	light brown	dry	fine to medium	non-plastic	with some vegetation
P023-2.5	SM	Silty Sand	Sub-angular to sub-rounded	light brown	slighty moist	fine to coarse	non-plastic	with some trace fine gravel
P024-0.5	ML	Sandy Silt	Sub-rounded	light brown	dry	fine to medium	non-plastic	with some vegetation
P024-2.5	SM	Silty Sand	Sub-angular to sub-rounded	light brown	slighty moist	fine to coarse	non-plastic	with some trace fine gravel
P025-0.5	ML	Sandy Silt	Sub-rounded	light brown	dry	fine to medium	non-plastic	with some vegetation
P025-2.5	SM	Silty Sand	Sub-angular to sub-rounded	light brown	slighty moist	fine to coarse	non-plastic	with some trace fine gravel
P026-0.5	ML	Sandy Silt	Sub-rounded	light brown	dry	fine to medium	non-plastic	with some vegetation
P026-2.5	SM	Silty Sand	Sub-angular to sub-rounded	light brown	slighty moist	fine to coarse	non-plastic	with some trace fine gravel
P027-0.5	ML	Sandy Silt	Sub-rounded	light brown	dry	fine to medium	non-plastic	with some vegetation
P027-2.5	SM	Silty Sand	Sub-angular to sub-rounded	light brown	slighty moist	fine to coarse	non-plastic	with some trace fine gravel
P028-0.5	ML	Sandy Silt	Sub-rounded	light brown	dry	fine to medium	non-plastic	with some vegetation
P028-2.5	SM	Silty Sand	Sub-angular to sub-rounded	light brown	slighty moist	fine to coarse	non-plastic	with some trace fine gravel
Soil Stockpile Inve	stigation							
MWD1-0.5	SM/SP	Silty Sand	Sub-angular to sub-rounded	light brown-grayish brown	dry	fine to coarse	non-plastic	with some vegetation
MWD1-5.0	SM/SP	Silty Sand	Sub-angular to sub-rounded	light brown	slightly moist	fine to coarse	non-plastic	with some trace fine gravel
MWD1-10.0	SM/SP	Silty Sand	Sub-angular to sub-rounded	brown	slightly moist	fine to coarse	non-plastic	with some trace fine gravel
MWD2-0.5	SM/SP	Silty Sand	Sub-angular to sub-rounded	light brown-grayish brown	dry	fine to coarse	non-plastic	with some vegetation
MWD2-5.0	SM/SP	Silty Sand	Sub-angular to sub-rounded	light brown	slightly moist	fine to coarse	non-plastic	with some trace fine gravel
MWD2-10.0	SM/SP	Silty Sand	Sub-angular to sub-rounded	brown	slightly moist	fine to coarse	non-plastic	with some trace fine gravel
MWD3-0.5	SM/SP	Silty Sand	Sub-angular to sub-rounded	light brown-grayish brown	dry	fine to coarse	non-plastic	with some vegetation
MWD3-5.0	SM/SP	Silty Sand	Sub-angular to sub-rounded	light brown	slightly moist	fine to coarse	non-plastic	with some trace fine gravel
MWD3-10.0	SM/SP	Silty Sand	Sub-angular to sub-rounded	brown	slightly moist	fine to coarse	non-plastic	with some trace fine gravel
MWD4-0.5	SM/SP	Silty Sand	Sub-angular to sub-rounded	light brown-grayish brown	dry	fine to coarse	non-plastic	with some vegetation
MWD4-5.0	SM/SP	Silty Sand	Sub-angular to sub-rounded	light brown	slightly moist	fine to coarse	non-plastic	with some trace fine gravel
MWD4-10.0	SM/SP	Silty Sand	Sub-angular to sub-rounded	brown	slightly moist	fine to coarse	non-plastic	with some trace fine gravel
Duplicate Soil Sam	ples							
P504-0.5	ML	Sandy Silt	Sub-rounded	light brown	dry	fine to medium	non-plastic	None
P512-0.5	ML	Sandy Silt	Sub-rounded	light brown	dry	fine to medium	non-plastic	None
P519-0.5	ML	Sandy Silt	Sub-rounded	light brown	dry	fine to medium	non-plastic	with some vegetation
P528-0.5	ML	Sandy Silt	Sub-rounded	light brown	dry	fine to medium	non-plastic	with some vegetation
MWD501-5.0	SM/SP	Silty Sand	Sub-angular	light brown-grayish brown	dry	fine to coarse	non-plastic	with some vegetation
MWD504-5.0	SM/SP	Silty Sand	Sub-angular to sub-rounded	light brown-grayish brown	dry	fine to coarse	non-plastic	with some vegetation
Notoo								

Notes:

1 SP = Poorly graded sand, SW = Well Graded Sand, SM = Silty Sand, SC, Clayey Sand, ML = silt/sandy silt, CL = lean clay/sandy clay, CH = fat clay/sandy fat clay,

OL = organic soil/with sand/with gravel

2 Angular, Sub-angular, Sub-rounded, Rounded

3 Dry = no moisture, dusty to the touch; Moist = Damp but no visible water; Wet = Visible free water

4 Range of particle sizes for sand (coarse, medium, fine) or gravel (coarse or fine)

5 Non-plastic, Low, Medium, High 6 Other descriptive features about the soil including dilatancy, toughness, or odor **APPENDIX B**

Appendix B Boring Location Coordinates

SR-60/WLC Interchange Improvement Project

Moreno Valley

Riverside County, California

Boring ID	Northing	Easting	Latitude	Longitude
P001	2286720.3153	6287793.4068	33.9396	-117.1529
P002	2286716.1287	6288405.6413	33.9396	-117.1509
P003	2286709.1295	6288708.7185	33.9396	-117.1499
P004/P504	2286708.7302	6289103.0688	33.9396	-117.1486
P005	2286703.7892	6289747.6531	33.9396	-117.1465
P006	2286723.7682	6290434.7732	33.9397	-117.1442
P007	2286781.8396	6290820.4320	33.9399	-117.1430
P008	2286795.1749	6291107.0417	33.9399	-117.1420
P009	2286846.2673	6291368.5163	33.9401	-117.1412
P009	2286846.0230	6291368.3240	33.9401	-117.1412
P010	2287017.2514	6291780.0242	33.9405	-117.1398
P011	2287354.0027	6291853.6818	33.9415	-117.1396
P012/P512	2287655.8264	6291841.1683	33.9423	-117.1396
P013	2284716.9871	6291847.9996	33.9342	-117.1395
P014	2284158.8890	6291848.5375	33.9327	-117.1395
P015	2283847.1368	6291840.4595	33.9318	-117.1395
P016	2283575.2041	6291840.5936	33.9311	-117.1395
P017	2283426.3191	6291954.6299	33.9307	-117.1391
P018	2283653.8914	6291965.9862	33.9313	-117.1391
P019/P519	2283789.8518	6291959.1875	33.9317	-117.1391
P020	2284239.6725	6291947.4265	33.9329	-117.1392
P021	2284417.8494	6291951.6180	33.9334	-117.1392
P023	2284960.7999	6291994.6276	33.9349	-117.1390
P024	2285332.0194	6291975.5004	33.9359	-117.1391
P025	2285667.6741	6292017.1901	33.9368	-117.1390
P026	2286242.3652	6292168.0775	33.9384	-117.1385
P027	2285927.8323	6294388.4217	33.9376	-117.1312
P028/P528	2285935.0177	6294601.5563	33.9376	-117.1305
MWD001	2286052.7431	6293051.4428	33.9379	-117.1356
MWD002	2286129.4498	6293127.7389	33.9381	-117.1353
MWD003	2286033.9934	6293721.2972	33.9379	-117.1334
MWD004	2285972.3515	6294119.1194	33.9377	-117.1321

Notes:

Highlighted cell indicates the location of sample containing lead concentration in excess of the 2016 Caltrans ADL Guidance

APPENDIX C

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

Date: November 2, 2018

Mr. Zach Freeman Leighton Consulting 10532 Acacia, Suite B-6 Rancho Cucamonga, CA 91730 Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.com

Project: MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552 Project No.: 10326.001 Lab I.D.: 181026-8 through -60

Dear Mr. Freeman:

The **analytical results** for the soil and water samples, received by our lab on October 26, 2018, are attached. The samples were received chilled, intact and with chain of custody record.

Trace concentrations between the MDL and the PQL have been reported with a `J'' flag indicator.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtis Desilets Vice President/Program Manger

2 fre

Andy Wang Laboratory Manager

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.com MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552

PROJECT No.: 10326.001 MATRIX:SOIL DATE RECEIVED:10/26/18 SAMPLING DATE:10/25/18 DATE ANALYZED:10/29/18

REPORT TO: MR. ZACH FREEMAN

PROJECT:

DATE RECEIVED: <u>10/26/18</u> DATE ANALYZED: <u>10/29/18</u> DATE REPORTED: <u>11/02/18</u>

EPA 6010B FOR TTLC-ARSENIC; PAGE 1 OF 2 UNITS: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE I.D.	LAB I.D.	ARSENIC RESULT	DF
P022-0.5	181026-8	2.71	1
P023-0.5	181026-10	2.13	1
P021-0.5	181026-12	2.93	1
P024-0.5	181026-14	2.20	1
P013-0.5	181026-16	2.33	1
P014-0.5	181026-18	2.66	1
P015-0.5	181026-20	2.76	1
P016-0.5	181026-22	2.83	1
P017-0.5	181026-24	3.32	1
P001-0.5	181026-26	1.78	1
P002-0.5	181026-28	2.15	1
P003-0.5	181026-30	1.68	1
P004-0.5	181026-32	1.80	1
P504-0.5	181026-34	1.84	1
P005-0.5	181026-36	3.38	1
P006-0.5	181026-38	1.84	1
P007-0.5	181026-40	2.14	1
P008-0.5	181026-42	5.72	1
P009-0.5	181026-44	2.34	1
P010-0.5	181026-46	2.51	1

Method Blank

ND

MDL	0.248
PQL	0.30

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit J = Trace Concentration between MDL and PQL Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration STLC Limit for Arsenic = 5 PPM * = STLC analysis <u>is</u> recommended (if marked) *** = The concentration exceeds the TTLC Limit @ 500 PPM, therefore the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked)

Data Reviewed and Approved by: _____ CAL-DHS ELAP CERTIFICATE No.: 1555

	04/0	C for S	Metals.	Analys	TT Si	CSC	PLID/S	OIL MA	TRIX		
Matrix Spike/ M	atrix Spike	Duplicate	e/ LCS :								
ANAL	YSIS DATE:	10/29/2018							Unit	: m <u>g/Kg(p</u>	(md
Analysis	Spk.Sample ID	CONC.	LCS %Rec.	LCS STATUS	Sample Result	Spike Conc.	WS	% Rec MS	MSD	% Rec MSD	% RPD
Arsenic(As)	181026-8	50.0	104	PASS	2.71	50.0	50.4	95%	51.7	98%	3%
Lead(Pb)	181026-8	50.0	108	PASS	5.67	50.0	58.5	106%	60.0	109%	3%
Nickel(Ni)	181026-8	50.0	104	PASS	14.0	50.0	70.7	113%	71.3	115%	1%
ANAL	YSIS DATE. :	10/29/2018									
Analysis	Spk.Sample ID	LCS CONC.	LCS %Rec.	LCS STATUS	Sample Result	Spike Conc.	NS	% Rec MS	MSD	% Rec MSD	% RPD
Mercury (Hg)	181026-65	0.125	94	PASS	0	0.125	0.110	88%	0.114	91%	4%
MS/MSD Status				-							
Analysis	SW%	%WSD	%LCS	%RPD							
(Arsenic(As)	PASS	PASS	PASS	PASS				$\left(\right)$			
Lead(Pb)	PASS	PASS	PASS	PASS			/	1	V		
Nickel(Ni)	PASS	PASS	PASS	PASS		ANALYST:	J	1			
Mercury (Hg)	PASS	PASS	PASS	PASS	-			G			
Accepted Range	75 ~ 125	75 ~ 125	85 ~ 115	0~20		FINAL REV	IEWER: -	2			1
*=Fail due to matrix inte Note:LCS is in control t	arference therefore results	are in control									

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.com MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552

PROJECT No.: 10326.001 MATRIX:SOIL

MAIRIA. <u>JUII</u>	DATE RECEIVED: <u>IU/26/18</u>
SAMPLING DATE: 10/25/18	DATE ANALYZED: 10/29/18
REPORT TO: MR. ZACH FREEMAN	DATE REPORTED: 11/02/18

EPA 6010B FOR TTLC-ARSENIC; PAGE 2 OF 2 UNITS: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE I.D.	LAB I.D.	ARSENIC RESULT	DF
P011-0.5	181026-48	1.69	1
P012-0.5	181026-50	2.10	1
P512-0.5	181026-52	2.05	1
P018-0.5	181026-54	3.09	1
P019-0.5	181026-56	3.18	1
P519-0.5	181026-58	3.72	1
Method Blank		ND	1

MDL	0.248
PQL	0.30

COMMENTS:

PROJECT:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit J = Trace Concentration between MDL and PQL Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration STLC Limit for Arsenic = 5 PPM * = STLC analysis <u>is</u> recommended (if marked) *** = The concentration exceeds the TTLC Limit @ 500 PPM, therefore the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked)

Data Reviewed and Approved by: CAL-DHS ELAP CERTIFICATE No.: 1555

Matrix Spike Matrix Spike Matrix Spike Including Intrimination Matrix Spike Duplicate/ LCS: Intrimination Analysis Intrimination Analysis Intrimination Analysis Intrimination Analysis Spike Intrimination Analysis Spike Intrimination Analysis Spike Intrimination Analysis Spike Miss Intrimination Analysis Spike Intrimination Interaction Analysis Spike Miss Intrimination Analysis Spike Miss Spike Miss Intrimination Analysis Spike Miss Spike Miss Miss Analysis Spike <th cols<="" th=""><th></th><th>07/0</th><th>C for</th><th>Metals</th><th>Analys</th><th>ris TT</th><th>LCSC</th><th>DLID/S</th><th>OIL MA</th><th>ATRIX</th><th></th><th></th></th>	<th></th> <th>07/0</th> <th>C for</th> <th>Metals</th> <th>Analys</th> <th>ris TT</th> <th>LCSC</th> <th>DLID/S</th> <th>OIL MA</th> <th>ATRIX</th> <th></th> <th></th>		07/0	C for	Metals	Analys	ris TT	LCSC	DLID/S	OIL MA	ATRIX		
Init: mol/factore Analysis IDATE: 10/29/2013 Analysis Spk.Sample LCS LCS Sample Spike MSD % Rec	<u>Matrix Spike/ M</u>	latrix Spike	Duplicate	e/ LCS :									
Analysis Spk.sample LCS LCS Sample MS MR MS Pc MS Pc MS Pc MS Pc Analysis ID CONC. %Rec. ILCS Statut Conc. MS P <th>ANAI</th> <th>LYSIS DATE:</th> <th>10/29/2018</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Unit</th> <th>: m<u>g/Kg(</u>E</th> <th>(md</th>	ANAI	LYSIS DATE:	10/29/2018							Unit	: m <u>g/Kg(</u> E	(md	
Arsenic(As) 181026-65 50.0 100 <i>PASS</i> 0.207 50.0 55.0 117% 58.9 117% 7% Lead(Pb) 181026-65 50.0 103 <i>PASS</i> 0 50.0 38.8 78% 41.8 84% 7% Nickel(Ni) 181026-65 50.0 103 <i>PASS</i> 13.0 50.0 68.3 111% 78% 7% Nickel(Ni) 181026-65 50.0 103 <i>PASS</i> 13.0 50.0 68.3 111% 7% 7% Analysis Shw sample LCS NAS Sample Spike MS MS 7% Mercury (Hg) 181026-65 0.125 94 PASS 0 0.125 0.110 8% 0 14% Mercury (Hg) 181026-65 0.125 94 PASS 0 0.125 0.110 8% 0 14% Mercury (Hg) 181026-65 0.125 91 0.125 0.110 8%<	Analysis	Spk.Sample ID	CONC.	LCS %Rec.	LCS STATUS	Sample Result	Spike Conc.	SM	% Rec MS	MSD	% Rec MSD	% RPD	
Lead(Pb) 181026-65 50.0 103 <i>PASS</i> 0 50.0 38.8 78% 41.8 84% 7% Nickel(Ni) 181026-65 50.0 103 <i>PASS</i> 13.0 50.0 68.3 111% 72.6 119% 7% Nickel(Ni) 181026-65 50.0 103 <i>PASS</i> 50.0 68.3 111% 72.6 119% 7% Analysis Spk.Sample LCS STUR Result Sp Result MSD MSD % Rec % RPD Mercury (Hg) 181026-65 0.125 94 PASS 0 0.125 0.110 88% 0.14 91% 7% Mercury (Hg) 181026-65 0.125 94 PASS 0 0.125 0.110 88% 0.14 91% 7% Mercury (Hg) 780 % Rec MSD % Rec MSD % Rec % RPS	Arsenic(As)	181026-65	50.0	100	PASS	0.207	50.0	55.0	110%	58.9	117%	7%	
Nickel(Ni) 181026-65 50.0 103 <i>PASS</i> 13.0 50.0 68.3 111% 72.6 119% 7% Analysis Spiks Darte:: 1026-65 50.0 103 <i>PASS</i> 68.3 111% 76.6 7% Analysis Spik Sample Conc. % Rec. Sample Spike MS MS MSD % Rec % RPo	Lead(Pb)	181026-65	50.0	103	PASS	0	50.0	38.8	78%	41.8	84%	7%	
ANALYSIS DATE : 10/29/2018ANALYSIS DATE : 10/29/2018AnalysisSpk.SampleLCSLCSLCSSampleSpikeMS% RecMSD% Rec% RPDAnalysisSpk.SampleLCSv.seutConc.% Rec.STATUSResultConc.% Rec% RPD% RecMercury (Hg)181026-650.12594PASS00.1250.11088%0.11491%4%Ms/MSD Status:Analysis% MSD% LcS% RPDMSCMSC% RPD% Rec% RPD% RPDArsenic(As)PASSPASSPASSPASSPASSPASSPASSPASS100.11491%4%Arsenic(As)PASSPASSPASSPASSPASSPASSPASSPASSPASSI Lead(Pb)PASSPASSPASSPASSPASSPASSPASSPASSMercury (Hg)PASSPASSPASSPASSPASSPASSPASSMercury (Hg)PASSPASSPASSPASSPASSPASSPASSMercury (Hg)PASSPASSPASSPASSPASSPASSPASSMercury (Hg)PASSPASSPASSPASSPASSPASSPASSMercury (Hg)PASSPASSPASSPASSPASSPASSPASSAccepted Range75 - 12585 - 1150 - 20PASSPASSPASSAccepted Range75 -	Nickel(Ni)	181026-65	50.0	103	PASS	13.0	50.0	68.3	111%	72.6	119%	7%	
Analysis Spk. Sample LCS LCS LCS LCS LCS Spike MS % Rec MSD % Rec % RPD % Rec % RPD % Rec % RPD % Rec % RPD % RPD % Rec % RPD	ANAL	YSIS DATE. :	10/29/2018										
Mercury (Hg) 181026-65 0.125 0.110 88% 0.114 91% 4% MS/MSD Status: Analysis %MS %MSD %RPD 0.125 0.110 88% 0.114 91% 4% MS/MSD Status: Analysis %MS %MSD %LCS %RPD	Analysis	Spk.Sample ID	LCS CONC.	LCS %Rec.	LCS STATUS	Sample Result	Spike Conc.	WS	% Rec MS	MSD	% Rec MSD	% RPD	
MS/MSD Status:Analysis%MS%MSD%LCS%RPDAnalysis%MS%LCS%RPDArsenic(As)PASSPASSPASSArsenic(Asi)PASSPASSPASSLead(Pb)PASSPASSPASSNickel(Ni)PASSPASSPASSMercury (Hg)PASSPASSPASSAccepted Range75 ~ 12585 ~ 1150 ~ 20FINAL REVIEWER:MAL REVIEWER:MAL	Mercury (Hg)	181026-65	0.125	94	PASS	0	0.125	0.110	88%	0.114	91%	4%	
Analysis%MSD%LCS%RPDArsenic(As)PASSPASSPASSArsenic(As)PASSPASSPASSLead(Pb)PASSPASSPASSNickel(Ni)PASSPASSPASSMercury (Hg)PASSPASSPASSAccepted Range75~12585~1150~20FINAL REVIEWER:MathererMatherer	MS/MSD Status												
Arsenic(As) PASS PASS PASS PASS PASS Lead(Pb) PASS PASS PASS PASS PASS Nickel(Ni) PASS PASS PASS PASS PASS Mercury (Hg) PASS PASS PASS PASS PASS Accepted Range 75 - 125 85 - 115 0 - 20 FINAL REVIEWER: M	Analysis	SW%	%WSD	%TCS	%RPD				0				
Lead(Pb) PASS PASS PASS PASS PASS Nickel(Ni) PASS PASS PASS PASS PASS Mercury (Hg) PASS PASS PASS PASS PASS Accepted Range 75~125 85~115 0~20 FINAL REVIEWER: M	Arsenic(As)	PASS	PASS	PASS	PASS			1	1				
Nickel(Ni) PASS PASS PASS PASS PASS PASS Mercury (Hg) PASS PASS PASS PASS PASS PASS Accepted Range 75 ~ 125 75 ~ 115 0 ~ 20 FINAL REVIEWER: M	Lead(Pb)	PASS	PASS	PASS	PASS			1	1				
Mercury (Hg) PASS	Nickel(Ni)	PASS	PASS	PASS	PASS		ANALYST:						
Accepted Range 75~125 75~125 85~115 0~20 FINAL REVIEWER:	Mercury (Hg)	PASS	PASS	PASS	PASS								
	Accepted Range	75 ~ 125	75 ~ 125	85 ~ 115	$0 \sim 20$		FINAL REV	'IEWER	64				
	Note:LCS is in control t	therefore results :	are in control										
Note:LCS is in control therefore results are in control													
Note:LCS is in control therefore results are in control													

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:	Leighton Consult	ing		
	10532 Acacia, Su	ite B-6, Rancho	Cucamonga, CA	91730
	Tel(909)743-2642	E-Mail: ZFreema	an@Leightongrou	p.com
PROJECT:	MBI - SR 60 & The	eodore Street, M	foreno Valley,	CA 92552
PROJECT No.	.: 10326.001			
MATRIX: <u>WATE</u>	ER	DATE	RECEIVED: 10/26	5/18
SAMPLING DA	ATE: <u>10/25/18</u>	DATE	ANALYZED: 10/30	1/18
REPORT TO:	IR. ZACH FREEMAN	DATE	REPORTED: <u>11/02</u>	:/18

ט	EPA 6010B FOR NITS: mg/L = MILLIC	TOTAL ARSENIC GRAM PER LITER = PPM	
SAMPLE I.D.	LAB I.D.	ARSENIC RESULT	DF
E001	181026-60	ND	1
Method Blank		ND	1
	MDL	0.005	
	PQL	0.01	
COMMENTS:			
DF = Dilution Fac	tor		
MDL = Method Dete	ection Limit		
PQL = Practical Q	uantitation Limit		
J = Trace Concent	ration between MDL	and PQL	
Actual Detection	Limit = PQL X DF		
ND = Below the Ac	tual Detection Lim	it or non-detected	
Data Reviewed and	Approved by:	1	

CAL-DHS ELAP CERTIFICATE No.: 1555

ANAL	-YSIS DATE:	10/30/2018							Uni	t : <u>mg/L(p</u>	(ma
Analysis	Spk.Sample BATCH ID	LCS CONC.	LCS %Rec.	LCS STATUS	Sample Result	Spike Conc.	SM	% Rec MS	MSD	% Rec MSD	% RP
Arsenic(As)	181026-60	1,00	102	PASS	0	1.00	1.17	117%	1.17	117%	%0
Lead(Pb)	181026-60	1.00	107	PASS	0	1.00	1.24	124%	1.23	123%	1%
Zinc(Zn)	181026-60	1.00	110	PASS	0.042	1.00	1.29	125%	1.29	125%	%0
ANAL	YSIS DATE. : Spk.Sample	10/26/2018 LCS	rcs	rcs	Sample	Spike	WS	% Rec	MSD	% Rec	% RP
	BATCH ID	CONC.	%Rec.	STATUS	Result	Conc.		MS		MSD	
Mercury (Hg)	181025-56	0.00250	96	PASS	0	0.00250	0.00220	88%	0.00230	92%	4%
MS/MSD Status							1.7				
Analysis	SM%	%WSD	%TCS	%RPD							
(Arsenic(As)	PASS	PASS	PASS	PASS			1				
Lead(Pb)	PASS	PASS	PASS	PASS		1	0				
Zinc(Zn)	PASS	PASS	PASS	PASS	ANALYST						
Mercury (Hg)	PASS	PASS	PASS	PASS			([
Accepted Range	75 ~ 125	75 ~ 125	85 ~ 115	0~20	FINAL RE	VIEWER:	R				

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.com MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552

PROJECT: MBI - SR 60 & Theodore Street, Moreno Valley, CA 92 PROJECT No.: 10326.001

	DATE RECEIVED: <u>10/26/18</u>
MATRIX: SOIL	DATE EXTRACTED: 10/29/18
SAMPLING DATE: 10/25/18	DATE ANALYZED: 10/29/18
REPORT TO: MR. ZACH FREEMAN	DATE REPORTED: <u>11/02/18</u>

SAMPLE I.D.: **P022-0.5**

LAB I.D.: 181026-8

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	MDL	DF
Aldrin	ND	0.001	0.0002	10
alpha-BHC	ND	0.001	0.0001	10
beta-BHC	ND	0.001	0.0001	10
gamma-BHC (Lindane)	ND	0.001	0.0001	10
delta-BHC	ND	0.001	0.0001	10
alpha-Chlordane	ND	0.001	0.0001	10
gamma-Chlordane	ND	0.001	0.0001	10
Total Chlordane	ND	0.005	0.0005	10
4,4'-DDD	ND	0.001	0.0002	10
4,4'-DDE	0.012	0.001	0.0001	10
4,4'-DDT	ND	0.001	0.0001	10
Dieldrin	ND	0.001	0.0002	10
Endosulfan I	ND	0.001	0.0002	10
Endosulfan II	ND	0.001	0.0002	10
Endosulfan Sulfate	ND	0.001	0.0001	10
Endrin	ND	0.001	0.0001	10
Endrin Aldehyde	ND	0.001	0.0001	10
Endrin Ketone	ND	0.001	0.0001	10
Heptachlor Epoxide	ND	0.001	0.0001	10
Heptachlor	ND	0.001	0.0001	10
Methoxyclor	ND	0.001	0.0001	10
Toxaphene	ND	0.020	0.0100	10

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.com PROJECT: MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552 PROJECT No.: 10326.001

	DATE RECEIVED: <u>10/26/18</u>
MATRIX: <u>SOIL</u>	DATE EXTRACTED: 10/29/18
SAMPLING DATE: <u>10/25/18</u>	DATE ANALYZED: <u>10/29/18</u>
REPORT TO: MR. ZACH FREEMAN	DATE REPORTED: <u>11/02/18</u>

SAMPLE I.D.: **P023-0.5**

LAB I.D.: 181026-10

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	MDL	DF
Aldrin	ND	0.001	0.0002	1
alpha-BHC	ND	0.001	0.0001	1
beta-BHC	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
delta-BHC	ND	0.001	0.0001	1
alpha-Chlordane	ND	0.001	0.0001	1
gamma-Chlordane	ND	0.001	0.0001	1
Total Chlordane	ND	0.005	0.0005	1
4,4'-DDD	ND	0.001	0.0002	1
4,4'-DDE	0.002	0.001	0.0001	1
4,4'-DDT	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0002	1
Endosulfan I	ND	0.001	0.0002	1
Endosulfan II	ND	0.001	0.0002	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0001	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0001	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.com PROJECT: MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552 PROJECT No.: 10326.001

	DATE RECEIVED: <u>10/26/18</u>
MATRIX: <u>SOIL</u>	DATE EXTRACTED: 10/29/18
SAMPLING DATE: 10/25/18	DATE ANALYZED: 10/29/18
REPORT TO: MR. ZACH FREEMAN	DATE REPORTED: 11/02/18

SAMPLE I.D.: **P021-0.5**

LAB I.D.: 181026-12

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	MDL	DF
Aldrin	ND	0.001	0.0002	1
alpha-BHC	ND	0.001	0.0001	1
beta-BHC	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
<u>delta-BHC</u>	ND	0.001	0.0001	1
alpha-Chlordane	ND	0.001	0.0001	1
gamma-Chlordane	ND	0.001	0.0001	1
Total Chlordane	ND	0.005	0.0005	1
4,4'-DDD	ND	0.001	0.0002	1
4,4'-DDE	0.0006J	0.001	0.0001	1
<u>4,4'-DDT</u>	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0002	1
Endosulfan I	ND	0.001	0.0002	1
Endosulfan II	ND	0.001	0.0002	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0001	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0001	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.comPROJECT:MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552

PROJECT No.: 10326.001

	DATE	RECEIVED.10/26/18
MATRIX: <u>SOIL</u>	DATE	EXTRACTED: <u>10/29/18</u>
SAMPLING DATE: <u>10/25/18</u>	DATE	ANALYZED: <u>10/29/18</u>
REPORT TO: MR. ZACH FREEMAN	DATE	REPORTED: <u>11/02/18</u>

SAMPLE I.D.: **P024-0.5**

LAB I.D.: 181026-14

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	MDL	DF
Aldrin	ND	0.001	0.0002	2
alpha-BHC	ND	0.001	0.0001	2
beta-BHC	ND	0.001	0.0001	2
gamma-BHC (Lindane)	ND	0.001	0.0001	2
delta-BHC	ND	0.001	0.0001	2
alpha-Chlordane	ND	0.001	0.0001	2
gamma-Chlordane	ND	0.001	0.0001	2
Total Chlordane	ND	0.005	0.0005	2
4,4'-DDD	ND	0.001	0.0002	2
4,4'-DDE	0.006	0.001	0.0001	2
4,4'-DDT	ND	0.001	0.0001	2
Dieldrin	ND	0.001	0.0002	2
Endosulfan I	ND	0.001	0.0002	2
Endosulfan II	ND	0.001	0.0002	2
Endosulfan Sulfate	ND	0.001	0.0001	2
Endrin	ND	0.001	0.0001	2
Endrin Aldehyde	ND	0.001	0.0001	2
Endrin Ketone	ND	0.001	0.0001	2
Heptachlor Epoxide	ND	0.001	0.0001	2
Heptachlor	ND	0.001	0.0001	2
Methoxyclor	ND	0.001	0.0001	2
Toxaphene	ND	0.020	0.0100	2

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.com PROJECT: MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552 PROJECT No.: 10326.001

	DATE RECEIVED: <u>10/26/18</u>
MATRIX: <u>SOIL</u>	DATE EXTRACTED: 10/29/18
SAMPLING DATE: <u>10/25/18</u>	DATE ANALYZED: 10/30/18
REPORT TO: MR. ZACH FREEMAN	DATE REPORTED: 11/02/18

SAMPLE I.D.: **P013-0.5**

LAB I.D.: 181026-16

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	MDL	DF
Aldrin	ND	0.001	0.0002	1
alpha-BHC	ND	0.001	0.0001	1
<u>beta-BHC</u>	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
<u>delta-BHC</u>	ND	0.001	0.0001	1
alpha-Chlordane	ND	0.001	0.0001	1
gamma-Chlordane	ND	0.001	0.0001	1
Total Chlordane	ND	0.005	0.0005	1
<u>4,4'-DDD</u>	ND	0.001	0.0002	1
<u>4,4'-DDE</u>	0.00099J	0.001	0.0001	1
4,4'-DDT	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0002	1
<u>Endosulfan I</u>	ND	0.001	0.0002	1
<u>Endosulfan II</u>	ND	0.001	0.0002	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0001	1
Endrin Aldehyde	ND	0.001	0.0001	1
<u>Endrin Ketone</u>	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0001	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.com PROJECT: MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552 PROJECT No.: 10326.001

	DATE RECEIVED: <u>10/26/18</u>
MATRIX: <u>SOIL</u>	DATE EXTRACTED: 10/29/18
SAMPLING DATE: <u>10/25/18</u>	DATE ANALYZED: 10/30/18
REPORT TO: MR. ZACH FREEMAN	DATE REPORTED: 11/02/18

SAMPLE I.D.: **P014-0.5**

LAB I.D.: 181026-18

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	MDL	DF
Aldrin	ND	0.001	0.0002	1
alpha-BHC	ND	0.001	0.0001	1
beta-BHC	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
<u>delta-BHC</u>	ND	0.001	0.0001	1
alpha-Chlordane	ND	0.001	0.0001	1
gamma-Chlordane	ND	0.001	0.0001	1
Total Chlordane	ND	0.005	0.0005	1
<u>4,4'-DDD</u>	ND	0.001	0.0002	1
<u>4,4'-DDE</u>	0.002	0.001	0.0001	1
<u>4,4'-DDT</u>	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0002	1
Endosulfan I	ND	0.001	0.0002	1
<u>Endosulfan II</u>	ND	0.001	0.0002	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0001	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
<u>Heptachlor Epoxide</u>	ND	0.001	0.0001	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.com PROJECT: MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552 PROJECT No.: 10326.001

DATE RECEIVED: <u>10/26/18</u>
DATE EXTRACTED: 10/29/18
DATE ANALYZED: 10/29/18
DATE REPORTED: 11/02/18

SAMPLE I.D.: **P015-0.5**

LAB I.D.: 181026-20

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	MDL	DF
Aldrin	ND	0.001	0.0002	1
alpha-BHC	ND	0.001	0.0001	1
beta-BHC	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
delta-BHC	ND	0.001	0.0001	1
alpha-Chlordane	ND	0.001	0.0001	1
gamma-Chlordane	ND	0.001	0.0001	1
Total Chlordane	ND	0.005	0.0005	1
4,4'-DDD	ND	0.001	0.0002	1
4,4'-DDE	0.0006J	0.001	0.0001	1
4,4'-DDT	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0002	1
Endosulfan I	ND	0.001	0.0002	1
Endosulfan II	ND	0.001	0.0002	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0001	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0001	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.comPROJECT:MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552

PROJECT No.: 10326.001

	DATE RECEIVED: <u>10/26/18</u>
MATRIX: SOIL	DATE EXTRACTED: 10/29/18
SAMPLING DATE: 10/25/18	DATE ANALYZED: 10/29/18
REPORT TO: MR. ZACH FREEMAN	DATE REPORTED: 11/02/18

SAMPLE I.D.: **P016-0.5**

LAB I.D.: 181026-22

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	MDL	DF
Aldrin	ND	0.001	0.0002	1
alpha-BHC	ND	0.001	0.0001	1
beta-BHC	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
delta-BHC	ND	0.001	0.0001	1
alpha-Chlordane	ND	0.001	0.0001	1
gamma-Chlordane	ND	0.001	0.0001	1
Total Chlordane	ND	0.005	0.0005	1
4,4'-DDD	ND	0.001	0.0002	1
<u>4,4'-DDE</u>	0.003	0.001	0.0001	1
<u>4,4'-DDT</u>	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0002	1
<u>Endosulfan I</u>	ND	0.001	0.0002	1
Endosulfan II	ND	0.001	0.0002	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0001	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0001	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.com

PROJECT: MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552 PROJECT No.: 10326.001

	DATE RECEIVED. 10/20/18
MATRIX: <u>SOIL</u>	DATE EXTRACTED:10/29/18
SAMPLING DATE: <u>10/25/18</u>	DATE ANALYZED: 10/30/18
REPORT TO: MR. ZACH FREEMAN	DATE REPORTED: 11/02/18

SAMPLE I.D.: **P017-0.5**

LAB I.D.: 181026-24

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	MDT.	שת
Aldrin	ND	0.001	0.0002	20
alpha-BHC	ND	0.001	0.0001	20
beta-BHC	ND	0.001	0.0001	20
gamma-BHC (Lindane)	ND	0.001	0.0001	20
<u>delta-BHC</u>	ND	0.001	0.0001	20
alpha-Chlordane	ND	0.001	0.0001	20
gamma-Chlordane	ND	0.001	0.0001	20
Total Chlordane	ND	0.005	0.0005	20
4,4'-DDD	ND	0.001	0.0002	20
4,4'-DDE	0.108	0.001	0 0001	20
<u>4,4'-DDT</u>	ND	0.001	0.0001	20
Dieldrin	ND	0.001	0.0002	20
Endosulfan I	ND	0.001	0.0002	20
<u>Endosulfan II</u>	ND	0.001	0.0002	20
Endosulfan Sulfate	ND	0.001	0.0001	20
Endrin	ND	0.001	0.0001	20
Endrin Aldehyde	ND	0.001	0.0001	20
Endrin Ketone	ND	0.001	0.0001	20
<u>Heptachlor Epoxide</u>	ND	0.001	0.0001	20
Heptachlor	ND	0.001	0.0001	20
Methoxyclor	ND	0.001	0.0001	20
Toxaphene	ND	0.020	0 0100	20

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.com PROJECT: MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552 PROJECT No.: 10326.001

MARD THE CONT	DATE RECEIVED: <u>10/26/18</u>	
MATRIX: SOIL	DATE EXTRACTED · 10/29/18	
SAMPLING DATE: 10/25/18	DATE ANALYZED: 10/30/18	
REPORT TO: <u>MR. ZACH FREEMAN</u>	DATE REPORTED: 11/02/18	
		-

SAMPLE I.D.: P001-0.5

LAB I.D.: 181026-26 _____

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POT.	MDT.	DE
Aldrin	ND	0 001	0 0002	DF
alpha-BHC	ND	0.001	0.0002	2
<u>beta-BHC</u>	ND	0.001	0.0001	- 6-
gamma-BHC (Lindane)	ND	0.001	0.0001	2
<u>delta-BHC</u>	ND	0.001	0.0001	0
alpha-Chlordane	ND	0.001	0.0001	2
gamma-Chlordane	ND	0.001	0.0001	2
Total Chlordane	ND	0.001	0.0001	2
4,4'-DDD	ND	0.001	0.0003	
4,4'-DDE	0.010	0.001	0.0002	- 4
4,4'-DDT	ND	0.001	0.0001	
Dieldrin	ND	0.001	0.0001	2
Endosulfan I	ND	0.001	0.0002	-4-
Endosulfan II	ND	0.001	0.0002	2
Endosulfan Sulfate	ND	0.001	0.0002	6
Endrin	ND	0.001	0.0001	-4-
Endrin Aldehyde	ND	0.001	0.0001	
Endrin Ketone	ND	0.001	0.0001	2
Heptachlor Epoxide	ND	0.001	0.0001	- 2
Heptachlor	ND	0.001	0.0001	2
Methoxyclor	ND	0.001	0.0001	2
Toxaphene	ND	0.001	0.0001	

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.com PROJECT: MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552 PROJECT No.: 10326.001

	DATE RECEIVED: <u>10/26/18</u>
MATRIX: <u>SOIL</u>	DATE EXTRACTED: 10/29/18
SAMPLING DATE: <u>10/25/18</u>	DATE ANALYZED: 10/30/18
REPORT TO: <u>MR. ZACH FREEMAN</u>	DATE REPORTED: 11/02/18

SAMPLE I.D.: **P002-0.5**

LAB I.D.: 181026-28

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	MDL	DF
Aldrin	ND	0.001	0.0002	4
alpha-BHC	ND	0.001	0.0001	4
beta-BHC	ND	0.001	0.0001	4
gamma-BHC (Lindane)	ND	0.001	0.0001	4
delta-BHC	ND	0.001	0.0001	4
alpha-Chlordane	ND	0.001	0.0001	4
gamma-Chlordane	ND	0.001	0.0001	4
Total Chlordane	ND	0.005	0.0005	4
4,4'-DDD	ND	0.001	0.0002	4
4,4'-DDE	0.012	0.001	0.0001	4
4,4'-DDT	ND	0.001	0.0001	4
Dieldrin	ND	0.001	0.0002	4
Endosulfan I	ND	0.001	0.0002	4
Endosulfan II	ND	0.001	0.0002	4
<u>Endosulfan</u> Sulfate	ND	0.001	0.0001	4
Endrin	ND	0.001	0.0001	4
Endrin Aldehyde	ND	0.001	0.0001	4
Endrin Ketone	ND	0.001	0.0001	4
Heptachlor Epoxide	ND	0.001	0.0001	4
Heptachlor	ND	0.001	0.0001	4
Methoxyclor	ND	0.001	0.0001	4
Toxaphene	ND	0.020	0.0100	4

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.com PROJECT: MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552

PROJECT No.: 10326.001

	DATE RECEIVED: <u>10/26/18</u>
MATRIX: <u>SOIL</u>	DATE EXTRACTED: <u>10/29/18</u>
SAMPLING DATE: <u>10/25/18</u>	DATE ANALYZED: 10/29/18
REPORT TO: <u>MR. ZACH FREEMAN</u>	DATE REPORTED: <u>11/02/18</u>
SAMPLE T D · POO3-0 5	LAB T D · 181026-30

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	MDL	DF
Aldrin	ND	0.001	0.0002	1
alpha-BHC	ND	0.001	0.0001	1
beta-BHC	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
delta-BHC	ND	0.001	0.0001	1
alpha-Chlordane	ND	0.001	0.0001	1
gamma-Chlordane	ND	0.001	0.0001	1
Total Chlordane	ND	0.005	0.0005	1
4,4'-DDD	ND	0.001	0.0002	1
4,4'-DDE	0.001	0.001	0.0001	1
4,4'-DDT	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0002	1
Endosulfan I	ND	0.001	0.0002	1
Endosulfan II	ND	0.001	0.0002	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0001	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0001	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.com PROJECT: MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552

PROJECT No.: 10326.001

	DATE RECEIVED: <u>10/26/18</u>
MATRIX: SOIL	DATE EXTRACTED: 10/29/18
SAMPLING DATE: 10/25/18	DATE ANALYZED: 10/29/18
REPORT TO: MR. ZACH FREEMAN	DATE REPORTED: 11/02/18

SAMPLE I.D.: **P004-0.5**

LAB I.D.: 181026-32

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	MDT	DF
Aldrin	ND	0.001	0.0002	1
alpha-BHC	ND	0.001	0.0001	1
<u>beta-BHC</u>	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
delta-BHC	ND	0.001	0.0001	1
alpha-Chlordane	ND	0.001	0.0001	1
gamma-Chlordane	ND	0.001	0.0001	1
Total Chlordane	ND	0.005	0.0005	1
<u>4,4'-DDD</u>	ND	0.001	0.0002	1
4,4'-DDE	0.001	0.001	0.0001	1
<u>4,4'-DDT</u>	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0002	1
<u>Endosulfan I</u>	ND	0.001	0.0002	1
<u>Endosulfan II</u>	ND	0.001	0.0002	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0001	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0001	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.com PROJECT: MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552

PROJECT No.: 10326.001

	DATE RECEIVED: <u>10/26/18</u>	
MATRIX: <u>SOIL</u>	DATE EXTRACTED: 10/29/18	
SAMPLING DATE: <u>10/25/18</u>	DATE ANALYZED: 10/29/18	
REPORT TO: MR. ZACH FREEMAN	DATE REPORTED: 11/02/18	

SAMPLE I.D.: **P504-0.5**

LAB I.D.: 181026-34

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	MDT.	DF
Aldrin	ND	0.001	0.0002	1
alpha-BHC	ND	0.001	0.0001	1
<u>beta-BHC</u>	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
delta-BHC	ND	0.001	0.0001	1
alpha-Chlordane	ND	0.001	0.0001	1
gamma-Chlordane	ND	0.001	0.0001	1
Total Chlordane	ND	0.005	0.0005	1
4,4'-DDD	ND	0.001	0.0002	1
4,4'-DDE	0.0006J	0.001	0.0001	1
4,4'-DDT	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0002	1
Endosulfan I	ND	0.001	0.0002	1
Endosulfan II	ND	0.001	0.0002	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0001	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0001	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.com PROJECT: MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552 PROJECT No.: 10326.001

	DATE RECEIVED: 10/26/18
MATRIX: <u>SOIL</u>	DATE EXTRACTED: 10/29/18
SAMPLING DATE: 10/25/18	DATE ANALYZED: 10/29/18
REPORT TO: MR. ZACH FREEMAN	DATE REPORTED: 11/02/18

SAMPLE I.D.: **P005-0.5**

LAB I.D.: 181026-36

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	MDT.	DF
Aldrin	ND	0.001	0.0002	1
alpha-BHC	ND	0.001	0.0001	1
beta-BHC	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
<u>delta-BHC</u>	ND	0.001	0.0001	1
alpha-Chlordane	ND	0.001	0.0001	1
gamma-Chlordane	ND	0.001	0.0001	1
Total Chlordane	ND	0.005	0.0005	1
<u>4,4'-DDD</u>	ND	0.001	0.0002	1
<u>4,4'-DDE</u>	0.0009J	0.001	0.0001	1
<u>4,4'-DDT</u>	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0002	1
<u>Endosulfan I</u>	ND	0.001	0.0002	1
<u>Endosulfan II</u>	ND	0.001	0.0002	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0001	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0001	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.com PROJECT: MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552 PROJECT No.: 10326.001

	DATE	RECEIVED: <u>10/26/18</u>
MATRIX: <u>SOIL</u>	DATE	EXTRACTED: 10/29/18
SAMPLING DATE: <u>10/25/18</u>	DATE	ANALYZED: 10/29/18
REPORT TO: MR. ZACH FREEMAN	DATE	REPORTED: <u>11/02/18</u>

SAMPLE I.D.: **P006-0.5**

LAB I.D.: 181026-38

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	MDL	DF
Aldrin	ND	0.001	0.0002	
alpha-BHC	ND	0.001	0.0001	1
beta-BHC	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
delta-BHC	ND	0.001	0.0001	1
alpha-Chlordane	ND	0.001	0.0001	1
gamma-Chlordane	ND	0.001	0.0001	1
Total Chlordane	ND	0.005	0.0005	1
4,4'-DDD	ND	0.001	0.0002	1
4,4'-DDE	ND	0.001	0.0001	1
<u>4,4'-DDT</u>	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0002	1
Endosulfan I	ND	0.001	0.0002	1
Endosulfan II	ND	0.001	0.0002	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0001	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0001	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.com MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552 PROJECT: PROJECT No.: 10326.001

	DATE	RECEIVED: <u>10/26/18</u>
MATRIX: <u>SOIL</u>	DATE	EXTRACTED: 10/29/18
SAMPLING DATE: <u>10/25/18</u>	DATE	ANALYZED: 10/29/18
REPORT TO: MR. ZACH FREEMAN	DATE	REPORTED: 11/02/18
	and the second second	

SAMPLE I.D.: **P007-0.5**

LAB I.D.: 181026-40

Organochlorine Pesticides Analysis method: EPA 8081A Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	MDL	DF
Aldrin	ND	0.001	0.0002	1
alpha-BHC	ND	0.001	0.0001	1
beta-BHC	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
<u>delta-BHC</u>	ND	0.001	0.0001	1
<u>alpha-Chlordane</u>	ND	0.001	0.0001	1
gamma-Chlordane	ND	0.001	0.0001	1
Total Chlordane	ND	0.005	0.0005	1
4,4'-DDD	ND	0.001	0.0002	1
<u>4,4'-DDE</u>	ND	0.001	0.0001	1
<u>4,4'-DDT</u>	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0002	1
Endosulfan I	ND	0.001	0.0002	1
Endosulfan II	ND	0.001	0.0002	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0001	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0001	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and POL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting

.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.com PROJECT: MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552 PROJECT No.: 10326.001

	DATE RECEIVED: <u>10/26/18</u>
MATRIX: <u>SOIL</u>	DATE EXTRACTED: 10/29/18
SAMPLING DATE: <u>10/25/18</u>	DATE ANALYZED: 10/29/18
REPORT TO: MR. ZACH FREEMAN	DATE REPORTED: 11/02/18

SAMPLE I.D.: **P008-0.5**

LAB I.D.: 181026-42

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	MDL	DF
Aldrin	ND	0.001	0.0002	1
alpha-BHC	ND	0.001	0.0001	1
<u>beta-BHC</u>	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
<u>delta-BHC</u>	NĎ	0.001	0.0001	1
alpha-Chlordane	ND	0.001	0.0001	1
gamma-Chlordane	ND	0.001	0.0001	1
Total Chlordane	ND	0.005	0.0005	1
4,4'-DDD	ND	0.001	0.0002	1
<u>4,4'-DDE</u>	ND	0.001	0.0001	1
<u>4,4'-DDT</u>	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0002	1
<u>Endosulfan I</u>	ND	0.001	0.0002	1
Endosulfan II	ND	0.001	0.0002	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0001	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0001	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.com

PROJECT: MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552 PROJECT No.: 10326.001

	DATE RECEIVED. 10/20/10
MATRIX: <u>SOIL</u>	DATE EXTRACTED: 10/29/18
SAMPLING DATE: <u>10/25/18</u>	DATE ANALYZED: 10/30/18
REPORT TO: MR. ZACH FREEMAN	DATE REPORTED: 11/02/18

SAMPLE I.D.: **P009-0.5**

LAB I.D.: 181026-44

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	MD L	ਸ਼ਹ
Aldrin	ND	0.001	0.0002	10
alpha-BHC	ND	0.001	0.0001	10
beta-BHC	ND	0.001	0.0001	10
gamma-BHC (Lindane)	ND	0.001	0.0001	10
delta-BHC	ND	0.001	0.0001	10
alpha-Chlordane	ND	0.001	0.0001	10
gamma-Chlordane	ND	0.001	0.0001	10
Total Chlordane	ND	0.005	0.0005	10
<u>4,4'-DDD</u>	ND	0.001	0.0002	10
<u>4,4'-DDE</u>	0.051	0.001	0.0001	10
<u>4,4'-DDT</u>	ND	0.001	0.0001	10
Dieldrin	ND	0.001	0.0002	10
Endosulfan I	ND	0.001	0.0002	10
Endosulfan II	ND	0.001	0.0002	10
Endosulfan Sulfate	ND	0.001	0.0001	10
Endrin	ND	0.001	0.0001	10
Endrin Aldehyde	ND	0.001	0.0001	10
Endrin Ketone	ND	0.001	0.0001	10
Heptachlor Epoxide	ND	0.001	0.0001	10
<u>Heptachlor</u>	ND	0.001	0.0001	10
Methoxyclor	ND	0.001	0.0001	10
Toxaphene	ND	0.020	0.0100	10

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.com

PROJECT: MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552 PROJECT No.: 10326.001 DATE RECEIVED:10/26/18

	51111 REGET (BD: 10/20/10
MATRIX: SOIL	DATE EXTRACTED:10/29/18
SAMPLING DATE: 10/25/18	DATE ANALYZED: 10/30/18
REPORT TO: <u>MR. ZACH FREEMAN</u>	DATE REPORTED: 11/02/18

SAMPLE I.D.: **P010-0.5**

LAB I.D.: 181026-46

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	MDT	DF
Aldrin	ND	0.001	0.0002	50
alpha-BHC	ND	0.001	0.0001	50
beta-BHC	ND	0.001	0.0001	50
gamma-BHC (Lindane)	ND	0.001	0.0001	50
delta-BHC	ND	0.001	0.0001	50
alpha-Chlordane	ND	0.001	0.0001	50
gamma-Chlordane	ND	0.001	0.0001	50
Total Chlordane	ND	0.005	0.0005	50
4,4'-DDD	ND	0.001	0.0002	50
4,4'-DDE	0.092	0.001	0.0001	50
4,4'-DDT	ND	0.001	0.0001	50
Dieldrin	ND	0.001	0.0002	50
Endosulfan I	ND	0.001	0.0002	50
Endosulfan II	ND	0.001	0.0002	50
Endosulfan Sulfate	ND	0.001	0.0001	50
Endrin	ND	0.001	0.0001	50
Endrin Aldehyde	ND	0.001	0.0001	50
Endrin Ketone	ND	0.001	0.0001	50
Heptachlor Epoxide	ND	0.001	0.0001	50
Heptachlor	ND	0.001	0.0001	50
Methoxyclor	ND	0.001	0.0001	50
Toxaphene	ND	0.020	0 0100	50

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected
1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT

CUSTOMER: Leighton Consulting

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.com

PROJECT: MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552 PROJECT No.: 10326.001

	DAID	$RECETVED \cdot \underline{TO/ZO/TO}$
MATRIX: SOIL	DATE	EXTRACTED: <u>10/29/18</u>
SAMPLING DATE: 10/25/18	DATE	ANALYZED: <u>10/29/18</u>
REPORT TO: MR. ZACH FREEMAN	DATE	REPORTED: <u>11/02/18</u>

METHOD BLANK REPORT FOR LAB I.D.: 181026-8, -10, -12, -14, -16, -18, -20, -22, -24, -26, -28, -30, -32, -34, -36, -38, -40, -42, -44, -46

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	MDL	DF
Aldrin	ND	0.001	0.0002	1
alpha-BHC	ND	0.001	0.0001	1
beta-BHC	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
delta-BHC	ND	0.001	0.0001	1
alpha-Chlordane	ND	0.001	0.0001	1
gamma-Chlordane	ND	0.001	0.0001	1
Total Chlordane	ND	0.005	0.0005	1
4,4'-DDD	ND	0.001	0.0002	1
4,4'-DDE	ND	0.001	0.0001	1
4,4'-DDT	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0002	1
Endosulfan I	ND	0.001	0.0002	1
Endosulfan II	ND	0.001	0.0002	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0001	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0001	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

			En	viro-Ch	em, Inc				
	1214 6	E. Lexington	Avenue, Pom	ona, CA 9176	6 Tel (909	9)590-5905 Fa	ix (909)590-590	70	
		E	PA 80	81 QA	VQC F	Report			
Matrix:	Soil/So	lid/Liqu	id(Oil)			Da	ate Analvzed	: 10/29-30/20	018
Unit	mg/Kg (pp	om)					,,		
Matrix Spike (MS	S)/Matrix Sni	ke Dunlicat							
Spiked Sample L	.ab I.D.:	181029-1	_CS1/2						
Analyte	S.R.	spk conc	MS	%REC	MSD	%REC	%RPD	ACP %RPD	ACP %RE
Gamma-BHC	0.000	0.00500	0.00608	122%	0.00595	119%	2%	0-20%	70-130
Aldrin	0.000	0.00500	0.00568	114%	0.00568	114%	0%	0-20%	70-130
4,4-DDE	0.000	0.00500	0.00459	92%	0.00498	100%	8%	0-20%	70-130
Lab Control Spik	(LCS) Rec	overy:							
Analyte	spk conc	LCS	% REC	ACP	%REC	1			
Gamma-BHC	0.00500	0.00579	116%	75-	125	-			
Aldrin	0.00500	0.00579	116%	75-	125	1			
4,4-DDE	0.00500	0.00596	119%	75-	125	1			
Dieldrin	0.00500	0.00528	106%	75-	125]			
Surrogate Recove	ery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%RFC
Sample I.D.			MB	181026-8	181026-10	181026-12	181026-14	181026-16	181026-18
Tetra-chloro-meta	-xvlene	50-150	98%	99%	116%	1.34%	98%	96%	94%
Decachlorobipher	iyl	50-150	53%	65%	59%	52%	54%	91%	146%
Surragata Decaus		A C D0/	0/050	N DEO	0/050		0/ D E0		
Sunoyale Recove	er y	ACP 70	70REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.		50.450	181026-20	181026-22	181026-24	181026-26	181026-28	181026-30	181026-32
Tetra-chioro-meta	-xyiene	50-150	100%	107%	101%	98%	97%	149%	113%
Decachioropipher	iyi	30-150	54%	53%	122%	129%	96%	45%	56%
Surrogate Recove	ry	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.	Swelling of the second		181026-34	181026-36	181026-38	181026-40	181026-42	181026-44	181026-46
Tetra-chloro-meta	-xylene	50-150	90%	132%	96%	104%	119%	100%	96%
Decachlorobiphen	yl	50-150	68%	64%	56%	82%	88%	118%	114%
S.R. = Sample Result			* = Surrogate f	ail due to matri	v interference	(If Marked)			
spk conc = Spike Con	centration		Note: I CS M	S MSD pro in	control therefo	re reculte are	in control		
%REC = Percent Pac	ountration overv		HOLE. LUS, MA	s, mou are m	control therefo	ne results are	in control.		
ACP %RPD = Accents	able Percent RPI) Range							
ACP %REC = Accepta	ible Percent Rec	overv Range							
		A #							
Analyzed and Review	red By-	A							
	· · · · · · · · · · · · · · · · · · ·	-							

Final Reviewer:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting

> 10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.com

MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552 PROJECT: PROJECT No.: 10326.001 DATE RECEIVED. 10/26/18

	DATE RECEIVED: 10/20/10
MATRIX: SOIL	DATE EXTRACTED: 10/29/18
SAMPLING DATE: 10/25/18	DATE ANALYZED: 10/30/18
REPORT TO: MR. ZACH FREEMAN	DATE REPORTED: <u>11/02/18</u>

SAMPLE I.D.: **P011-0.5**

LAB I.D.: 181026-48

Organochlorine Pesticides Analysis method: EPA 8081A Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	MDL	DF
Aldrin	ND	0.001	0.0002	1
alpha-BHC	ND	0.001	0.0001	1
beta-BHC	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
delta-BHC	ND	0.001	0.0001	1
alpha-Chlordane	ND	0.001	0.0001	1
gamma-Chlordane	ND	0.001	0.0001	1
Total Chlordane	ND	0.005	0.0005	1
4,4'-DDD	ND	0.001	0.0002	1
4,4'-DDE	NĎ	0.001	0.0001	1
4,4'-DDT	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0002	1
Endosulfan I	ND	0.001	0.0002	1
Endosulfan II	ND	0.001	0.0002	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0001	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0001	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.com PROJECT: MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552

PROJECT No.: 10326.001

	DATE RECEIVED: <u>10/26/18</u>
MATRIX: SOIL	DATE EXTRACTED: 10/29/18
SAMPLING DATE: 10/25/18	DATE ANALYZED: 10/30/18
REPORT TO: MR. ZACH FREEMAN	DATE REPORTED: 11/02/18

SAMPLE I.D.: **P012-0.5**

LAB I.D.: 181026-50

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	MDL	DF
Aldrin	ND	0.001	0.0002	1
alpha-BHC	ND	0.001	0.0001	1
<u>beta-BHC</u>	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
delta-BHC	ND	0.001	0.0001	1
alpha-Chlordane	ND	0.001	0.0001	1
gamma-Chlordane	ND	0.001	0.0001	1
Total Chlordane	ND	0.005	0.0005	1
<u>4,4'-DDD</u>	ND	0.001	0.0002	1
4,4'-DDE	ND	0.001	0.0001	1
<u>4,4'-DDT</u>	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0002	1
<u>Endosulfan I</u>	ND	0.001	0.0002	1
<u>Endosulfan II</u>	ND	0.001	0.0002	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0001	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0001	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.com PROJECT: MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552 PROJECT No.: 10326.001

	DATE RECEIVED: <u>10/26/18</u>
MATRIX: <u>SOIL</u>	DATE EXTRACTED: 10/29/18
SAMPLING DATE: 10/25/18	DATE ANALYZED: 10/29/18
REPORT TO: MR. ZACH FREEMAN	DATE REPORTED: 11/02/18

SAMPLE I.D.: **P512-0.5**

LAB I.D.: 181026-52

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	MDT	DF
Aldrin	ND	0.001	0.0002	1
alpha-BHC	ND	0.001	0.0001	1
<u>beta-BHC</u>	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
delta-BHC	ND	0.001	0.0001	1
alpha-Chlordane	ND	0.001	0.0001	1
gamma-Chlordane	ND	0.001	0.0001	1
Total Chlordane	ND	0.005	0.0005	1
<u>4,4'-DDD</u>	ND	0.001	0.0002	1
4,4'-DDE	ND	0.001	0.0001	1
4,4'-DDT	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0002	1
Endosulfan I	ND	0.001	0.0002	1
Endosulfan II	ND	0.001	0.0002	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0001	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0001	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.com PROJECT: MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552 PROJECT No.: 10326.001

	DATE RECEIVED: <u>10/26/18</u>
MATRIX: SOIL	DATE EXTRACTED: 10/29/18
SAMPLING DATE: <u>10/25/18</u>	DATE ANALYZED: 10/29/18
REPORT TO: MR. ZACH FREEMAN	DATE REPORTED: <u>11/02/18</u>

SAMPLE I.D.: **P018-0.5**

LAB I.D.: 181026-54

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	MDL	DF
Aldrin	ND	0.001	0.0002	1
alpha-BHC	ND	0.001	0.0001	1
beta-BHC	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
delta-BHC	ND	0.001	0.0001	1
alpha-Chlordane	ND	0.001	0.0001	1
gamma-Chlordane	ND	0.001	0.0001	1
Total Chlordane	ND	0.005	0.0005	1
4,4'-DDD	ND	0.001	0.0002	1
4,4'-DDE	0.003	0.001	0.0001	1
4,4'-DDT	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0002	1
Endosulfan I	ND	0.001	0.0002	1
Endosulfan II	ND	0.001	0.0002	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0001	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0001	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.com PROJECT: MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552 PROJECT No.: 10326.001

	DATE RECEIVED: 10/26/18
MATRIX: SOIL	DATE EXTRACTED: 10/29/18
SAMPLING DATE: <u>10/25/18</u>	DATE ANALYZED: 10/30/18
REPORT TO: MR. ZACH FREEMAN	DATE REPORTED: 11/02/18

SAMPLE I.D.: **P019-0.5**

LAB I.D.: 181026-56

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	MDL	DF
Aldrin	ND	0.001	0.0002	50
alpha-BHC	ND	0.001	0.0001	50
<u>beta-BHC</u>	ND	0.001	0.0001	50
gamma-BHC (Lindane)	ND	0.001	0.0001	50
<u>delta-BHC</u>	ND	0.001	0.0001	50
alpha-Chlordane	ND	0.001	0.0001	50
gamma-Chlordane	ND	0.001	0.0001	50
Total Chlordane	ND	0.005	0.0005	50
<u>4,4'-DDD</u>	ND	0.001	0.0002	50
4,4'-DDE	0.082	0.001	0.0001	50
<u>4,4'-DDT</u>	ND	0.001	0.0001	50
Dieldrin	ND	0.001	0.0002	50
<u>Endosulfan I</u>	ND	0.001	0.0002	50
Endosulfan II	ND	0.001	0.0002	50
Endosulfan Sulfate	ND	0.001	0.0001	50
Endrin	ND	0.001	0.0001	50
Endrin Aldehyde	ND	0.001	0.0001	50
Endrin Ketone	ND	0.001	0.0001	50
Heptachlor Epoxide	ND	0.001	0.0001	50
Heptachlor	ND	0.001	0.0001	50
Methoxyclor	ND	0.001	0.0001	50
Toxaphene	ND	0.020	0.0100	50

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.com

PROJECT: MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552 PROJECT No.: 10326.001

	DALE RECEIVED: 10/20/10
MATRIX: SOIL	DATE EXTRACTED: <u>10/29/18</u>
SAMPLING DATE: <u>10/25/18</u>	DATE ANALYZED: 10/30/18
REPORT TO: MR. ZACH FREEMAN	DATE REPORTED: 11/02/18

SAMPLE I.D.: **P519-0.5**

LAB I.D.: 181026-58

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	MDL	DF	
Aldrin	ND	0.001	0.0002	50	
alpha-BHC	ND	0.001	0.0001	50	
beta-BHC	ND	0.001	0.0001	50	
gamma-BHC (Lindane)	ND	0.001	0.0001	50	
delta-BHC	ND	0.001	0.0001	50	
alpha-Chlordane	ND	0.001	0.0001	50	
gamma-Chlordane	ND	0.001	0.0001	50	
Total Chlordane	ND	0.005	0.0005	50	
4,4'-DDD	ND	0.001	0.0002	50	
<u>4,4'-DDE</u>	0.108	0.001	0.0001	50	
4,4'-DDT	ND	0.001	0.0001	50	
Dieldrin	ND	0.001	0.0002	50	
Endosulfan I	ND	0.001	0.0002	50	
Endosulfan II	ND	0.001	0.0002	50	
Endosulfan Sulfate	ND	0.001	0.0001	50	
Endrin	ND	0.001	0.0001	50	
Endrin Aldehyde	ND	0.001	0.0001	50	
Endrin Ketone	ND	0.001	0.0001	50	
Heptachlor Epoxide	ND	0.001	0.0001	50	
Heptachlor	ND	0.001	0.0001	50	
Methoxyclor	ND	0.001	0.0001	50	
Toxaphene	ND	0.020	0.0100	50	

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT

CUSTOMER: Leighton Consulting

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.com PROJECT: MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552 PROJECT No.: 10326.001

	DATE	RECEIVED: <u>10/26/18</u>
MATRIX: <u>SOIL</u>	DATE	EXTRACTED: <u>10/29/18</u>
SAMPLING DATE: <u>10/25/18</u>	DATE	ANALYZED: <u>10/30/18</u>
REPORT TO: MR. ZACH FREEMAN	DATE	REPORTED: <u>11/02/18</u>

METHOD BLANK REPORT FOR LAB I.D.: 181026-48, -50, -52, -54, -56, -58

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	MDL	DF	
Aldrin	ND	0.001	0.0002	1	
alpha-BHC	ND	0.001	0.0001	1	
beta-BHC	ND	0.001	0.0001	1	
gamma-BHC (Lindane)	ND	0.001	0.0001	1	
delta-BHC	ND	0.001	0.0001	1	
alpha-Chlordane	ND	0.001	0.0001	1	
gamma-Chlordane	ND	0.001	0.0001	1	
Total Chlordane	ND	0.005	0.0005	1	
4,4'-DDD	ND	0.001	0.0002	1	
4,4'-DDE	ND	0.001	0.0001	1	
4,4'-DDT	ND	0.001	0.0001	1	
Dieldrin	ND	0.001	0.0002	1	
<u>Endosulfan I</u>	ND	0.001	0.0002	1	
Endosulfan II	ND	0.001	0.0002	1	
Endosulfan Sulfate	ND	0.001	0.0001	1	
Endrin	ND	0.001	0.0001	1	
Endrin Aldehyde	ND	0.001	0.0001	1	
Endrin Ketone	ND	0.001	0.0001	1	
Heptachlor Epoxide	ND	0.001	0.0001	1	
Heptachlor	ND	0.001	0.0001	1	
Methoxyclor	ND	0.001	0.0001	1	
Toxaphene	ND	0.020	0.0100	1	

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

Enviro-Chen	n, Inc.
--------------------	---------

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909)590-5905 Fax (909)590-5907

EPA 8081 QA/QC Report

Date Analyzed:

10/30/18

Matrix:

Soil/Solid/Liquid(Oil)

Unit:

mg/Kg (ppm)

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

Spiked Sample Lab I.D.: 181030-LCS1/2

Analyte	S.R.	spk conc	MS	%REC	MSD	%REC	%RPD	ACP %RPD	ACP %REC
Gamma-BHC	0.000	0.00500	0.00551	110%	0.00496	99%	11%	0-20%	70-130
Aldrin	0.000	0.00500	0.00354	71%	0.00363	73%	3%	0-20%	70-130
4,4-DDE	0.000	0.00500	0.00389	78%	0.00429	86%	10%	0-20%	70-130

Lab Control Spike (LCS) Recovery:

Analyte	spk conc	LCS	% REC	ACP %REC
Gamma-BHC	0.00500	0.00578	116%	75-125
Aldrin	0.00500	0.00377	75%	75-125
4,4-DDE	0.00500	0.00411	82%	75-125
Dieldrin	0.00500	0.00417	83%	75-125

Surrogate Recovery	ACP%	%REC						
Sample I.D.		MB /	181026-48	181026-50	181026-52	181026-54	181026-56	181026-58
Tetra-chloro-meta-xylene	50-150	67%	95%	93%	89%	89%	99%	97%
Decachlorobiphenyl	50-150	80%	86%	90%	89%	81%	133%	76%
Surrogate Recovery	ACP%	%REC						
Sample I.D.		181029-19						
Tetra-chloro-meta-xylene	50-150	77%						
Decachlorobiphenyl	50-150	89%						
Surrogate Recovery	ACP%	%REC						
Sample I.D.	-						-	
Tetra-chloro-meta-xylene	50-150							
Decachlorobiphenyl	50-150							

S.R. = Sample Result

* = Surrogate fail due to matrix interference (If Marked)

spk conc = Spike Concentration

%REC = Percent Recovery

ACP %RPD = Acceptable Percent RPD Range

ACP %REC = Acceptable Percent Recovery Range

Analyzed and Reviewed By:

Final Reviewer:

Owners to fait the transition into farming (16 Martin 1)

Note: LCS, MS, MSD are in control therefore results are in control.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.com PROJECT: MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552 PROJECT No.: 10326.001

	DATE	RECEIVED: 10/26/18	
MATRIX: <u>WATER</u>	DATE	EXTRACTED: 10/26/18	
SAMPLING DATE: 10/25/18	DATE	ANALYZED: <u>10/29/18</u>	
REPORT TO: <u>MR. ZACH FREEMAN</u>	DATE	REPORTED: 11/02/18	

SAMPLE I.D.: E001

LAB I.D.: 181026-60

Organochlorine Pesticides Analysis Method: EPA 8081A

Unit: ug/L = Microgram per Liter = PPB

PARAMETER	SAMPLE RESULT	PQL	MDL	DF	
Aldrin	ND	0.100	0.004	1	
alpha-BHC	ND	0.100	0.004	1	
beta-BHC	ND	0.100	0.006	1	
gamma-BHC (Lindane)	ND	0.100	0.004	1	
delta-BHC	ND	0.100	0.003	1	
alpha-Chlordane	ND	0.100	0.003	1	
gamma-Chlordane	ND	0.100	0.004	1	
Total Chlordane	ND	0.500	0.050	1	
4,4'-DDD	ND	0.100	0.002	1	
4,4'-DDE	ND	0.100	0.006	1	
4,4'-DDT	ND	0.100	0.004	1	
Dieldrin	ND	0.100	0.004	1	
Endosulfan I	ND	0.100	0.005	1	
Endosulfan II	ND	0.100	0.006	1	
Endosulfan Sulfate	ND	0.100	0.005	1	
Endrin	ND	0.100	0.004	1	
Endrin Aldehyde	ND	0.100	0.040	1	
Endrin Ketone	ND	0.100	0.004	1	
Heptachlor Epoxide	ND	0.100	0.008	1	
Heptachlor	ND	0.100	0.004	1	
Methoxyclor	ND	0.100	0.004	1	
Toxaphene	ND	2.00	1.00	1	

COMMENTS

DF = Dilution Factor MDL = Method Detection Limit Actual Detection Limit = PQL X DF PQL = Practical Quantitation Limit J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT

CUSTOMER: Leighton Consulting

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)743-2642 E-Mail: ZFreeman@Leightongroup.com PROJECT: MBI - SR 60 & Theodore Street, Moreno Valley, CA 92552 PROJECT No.: 10326.001

	DATE RECEIVED: 10/26/18	
MATRIX: <u>WATER</u>	DATE EXTRACTED: 10/26/18	
SAMPLING DATE: 10/25/18	DATE ANALYZED: 10/29/18	
REPORT TO: MR. ZACH FREEMAN	DATE REPORTED: 11/02/18	

METHOD BLANK REPORT FOR LAB I.D.: 181026-60

Organochlorine Pesticides Analysis Method: EPA 8081A

Unit: ug/L = Microgram per Liter = PPB

PARAMETER	SAMPLE RESULT	POL	MDL	DF
Aldrin	ND	0.100	0.004	1
alpha-BHC	ND	0.100	0.004	1
beta-BHC	ND	0.100	0.006	1
gamma-BHC (Lindane)	ND	0.100	0.004	1
delta-BHC	ND	0.100	0.003	1
alpha-Chlordane	ND	0.100	0.003	1
gamma-Chlordane	ND	0.100	0.004	1
Total Chlordane	ND	0.500	0.050	1
4,4'-DDD	ND	0.100	0.002	1
4,4'-DDE	ND	0.100	0.006	1
4,4'-DDT	ND	0.100	0.004	1
Dieldrin	ND	0.100	0.004	1
Endosulfan I	ND	0.100	0.005	1
Endosulfan II	ND	0.100	0.006	1
Endosulfan Sulfate	ND	0.100	0.005	1_
Endrin	ND	0.100	0.004	1
Endrin Aldehyde	ND	0.100	0.040	1
Endrin Ketone	ND	0.100	0.004	1
Heptachlor Epoxide	ND	0.100	0.008	1
Heptachlor	ND	0.100	0.004	1
Methoxyclor	ND	0.100	0.004	1
Toxaphene	ND	2.00	1.00	1

COMMENTS

DF = Dilution Factor MDL = Method Detection Limit Actual Detection Limit = PQL X DF PQL = Practical Quantitation Limit J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

	Ī	<u>EPA 6</u>	08 (8)	081) C	A/QC	Rep	ort		
Matrix: Unit	Water/Li	quid					Da	te Analyzed:	<u>10/29/18</u>
Matrix Spike (M	S)/Matrix Spi	ke Duplicat	e (MSD)						
Spiked Sample	Lab I.D.:	181026-60	MS/MSD						
Analyte	S.R.	spk conc	MS	%REC	MSD	%REC	%RPD	ACP %RPD	ACP %REC
Gamma-BHC	0	0.500	0.560	112%	0.516	103%	8%	0-20%	70-130
Aldrin	0	0.500	0.525	105%	0.502	100%	4%	0-20%	70-130
4,4-DDE	0	0.500	0.399	80%	0.415	83%	4%	0-20%	70-130
Lab Control Spi	spk conc	LCS	% REC	ACP %	%REC	1			
Gamma-BHC	0.500	0.605	121%	75-	125				
Aldrin	0.500	0.613	123%	75-	125	1			
4.4-DDE	0.500	0.557	111%	75-	125	1			
Dieldrin	0.500	0.537	107%	75-	125	1			
Surrogate Recov	ery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.	and the second distance		M-BLK	81026-60					
Tetra-chloro-met	a-xylene	50-150	100%	115%					_
Decachlorobipne	y1	50-150	84%	56%					
Surrogate Recov	erv	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.						/01120	/01120	JUNEO	7011120
Tetra-chloro-met	a-xvlene								
Decachlorobipne	yl								
Surrogate Recov		%REC	%REC	%REC	%REC	%REC	%REC	1	
Sample I D		7011120	701120	701120	7011120	JUILEO	JUILO		
Tetra-chloro-met	a_vvlene								- 13
Decachlorobinne	vi				- V				
S.R. = Sample Resul spk conc = Spike Cor %REC = Percent Red ACP %RPD = Accept ACP %REC = Accept Analyzed and Reviet	t ncentration covery table Percent RPI table Percent Rec wed By:	D Range covery Range		* = Surrogate f	ail due to mat	rix interference			
analyzed and Revie	wea by:			- Sunogate T			6 II		
Final Reviewer:	0			Note: LCS, MS	5, MSD are in	control there	fore results a	re in control.	

Keric 600 B	Analysis Required comments		H010		Had		Hen 8		1901¢		Hold		Alo(A		Hark		Eap Man Sampler's Signature:	1-8785 Project Name/ID:	Way Pleightons (124 Con MBT SQ 700 + The manden < 4	Date & Time: 10/01/20 Instructions for Sample Storande After Analysis	Date & Time: is 0 Dispose of 0 Return to Client 0 Store (30 Days	Data & Timo.
CONTRINERS FRATURE NOITAYA	PRESE TEMPI	1 1 1 1	1 A												-	1 1 ice	Project Contact	Tel: 0.09-527	Fax/Email: 28/Cev	× 14 A	TA.	
Turnaround Time Same Day 24 Hours 12 Hours 72 Hours Turveet (Standard)	SAMPLING DATE TIME	02 0135/16 0735 50	1 0739 1	0456	1540	0813	5180	02.8	0331	0245	1440	09060	2050	0320	1 0921	12/25/18 0931 Soi		BG	CA 91730	Received by:	Received by:	Received by:
Laboratories enue, (909) 590-5907	LABID	1/8-000/8/	6-1	01-1		-12	13	フィー	-15	91-		T	41	2-	12-	122-1	the The	ia St Suit	Curamong a	ander	A	
Enviro-Chem, Inc. I 1214 E. Lexington Ave Pomona, CA 91766 Tel: (909) 590-5905 Fax: CA-DHS ELAP CERTIFIC)	SAMPLE ID	2012-0.5	2022-2.5	P023-0.5	PO23 - 2.5	P021- 6.5	902 - 2.5	10- 405	2024-2,5	2013-0.5	0013-2.5	2014-0.5	V014-2.5	2015 - 0.5	1015 - J.S	PO16-0.5	Company Name: Leighton Consul	Address: 10532 Acae	City/State/Zip: Mancho	Relinquished by: Duron	Relinquished by:	Relinquished by:

Misc./PO#	ysis Required comments	H010		Hold		Hold		Haid		Hold		2 Mil		Hold		Heit	Sampler's Signature:	Project Name/ID:	maron MBI-SRAID-Thinkhow 54	Time: 10/11/10 Instructions for Sample Storage After Analysis:	Time (20 Dispose of O Return to Client O Store (30 Days)	Time O Other
Provide the second state of the second state o	PRESI PRESI	1.6	XX		XX		XX		XX		XX		X		XX	ice	Froject Contact:	Eel: 904-527-8785	axtEmail: 2. Greencined en lution a	LA Date 8	(A 97 Date 8	C Date 8
maround Time ame Day Hours Hours Meet (Standard)	SAMPLING FE C	5/18 0933 5011	1 0948	0950	10:22	1024	1038	040	1047	1044	1055	1056	1057	1028	1 1113	5/18/11/9 Soil		Be	1 CH 91730 F	Received by:	Received by:	Received by:
Laboratories Turr enue, 0 24 0 48 0 48 0 48 0 48 0 48 0 48 0 48 0 4	LAB ID	18/026-23/02	The Int	-1/-	->6	12-	-28	200	01		-32-	- 33	134	-35-	-36	1 -37 104	with a the	nera sé suita.	La randres	in Carebound	411 ×	
Enviro-Chem, Inc. 1214 E. Lexington Av Pomona, CA 91766 Tel: (909) 590-5905 Fax CA-DHS ELAP CERTIFIC	SAMPLEID	P016-2.5	PO17 -05	Po17-2.5	7001-0.5	Peol-25	8602-0.5	8002-2.5	8003-0.5	8003-25	8004-0.5	8004-2.5	8504 -0.5	5.2-4059	1005-0.5	8005-2.5	Company Name: Leighten Lons	Address: (0532 Acc	City/State/Zip R.G. IN C. IN	Relinquished by: BICLANN	Relinquished by:	Relinquished by

All Misc.PO#	Analysis Required comments		Held.		Hald		Hald		Herl		Hold		Held		2107		Set Man Sampler's Signature:	7-8765 Project Name/ID:		Eman Bleightoneson 127-51-1021 Thus Love Ct.	Eman Ol rightongraph MBL-SR-lest Theorbords E Date & Times with the Instructions for Sample Storage Atter Analysis:	Coman Ol & ight Jord Sand MBT - SR-les F Theorbord St Date & Time: 11 10 Instructions for Sample Storage After Analysis: Date & Time: 10, 10 O Dispose of 0 Return to Client 0 Store (30 Days)
ARUTARE NOITAVRE	PRESE	je														l'a X	ect Contact:	909-527-809		Email: E Arenna	Email: Z. Arema	Email: Z. Arvenna
CONTRINERS	I IATAM 10.01	1 1:05 C	1												3 1	H Sail 1	E Se	Tel:		730 FaxI	730 FaxI	· 7 30 FaxI ed by:
Turnaround Time Same Day 0 24 Hours 0 48 Hours 0 48 Hours 0 24 Hours 0 24 Hours 0 25 Hours 0 20 Hours	SAMPLING DATE TIME	10/25/18 1130	113/	0 411	1 H H	1202	1204	n17	1219	1229	1232	1243	1249	12021	1125	0/15/18 1251		with B6		ngar CA 91	ngar CH 91	1gar CA 91
aboratories nue, 909) 590-5907 TE #1555	LABID	SE-kural	JE- 1	07-1	14-1	24-	5	オフー	57	4-	LU-	37-1	91	2-	F	V-T-V	with the the	icita St S		CINCONDY	LINGUNDY na Carlo 2	na logla
Enviro-Chem, Inc. L 214 E. Lexington Aver omona, CA 91766 el: (909) 590-5905 Fax: (9 A-DHS ELAP CERTIFICA	SAMPLEID	206-0.5	006-2.5	0.2-0.5	07-2.5	008 = 0.4	1008 - 2.5	1009-0-6	8.2 500 ×	2010-0.5	010-2.5	101-0.5	2011-25	6.0-210	2012-25	9512-0.5	ompany Name: Lefghton Consu	ddress: 10532 Aca	1 4	ity/State/Zip: /handro	ity/State/Zip: /handro	ity/State/Zip. Mandno elinquished by: Breading

Sumeter Upper Sumeter Connervation Sumeter Connervation Connenvation Conn	SAMPLEID LAB 512-2.5 [81070 018-6.5 018-2.5	5907 Cher	urs urs K (Standard)	Х	CONTAINEF	NOITAVA	Dent Col		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	512-2.5 181000 218-6.5 018-2.5	SID DATE	MPLING	(IATAM)	No. OF	вязяя	Analysis Req	uired co	OMMENTS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	218-0.5	1/52/01 55	18 1255	50,1	-	16		1/ali	P
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	018-2.5	-71	1339			X		1011	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		14-	1337			~		Nal.	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	219-0.5	26	356				×	11010	X
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	019-2,5	177	1359				4	Hali	(P
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	519-0.5	-7.5	1405			X		1011	4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		101-	1409	30il		ice.	-	Har	T'I
Image: Non-Section of the section	00/	-60 19/13/1	6 1422	luid	N	ie X		1.01) /	α
Impary Name: Impary Name: Project Contact: Project Contact: Impary Name: Impary Name: Project Contact: Project NameID: Instructions of Lagrance Impary Name: Project NameID: Impary NameID: Instructions of Lagrance Impary Name: Project NameID: Impary NameID: Instructions of Lagrance Impary Name: Impary NameID: Impary NameID: Instructions of Lagrance Impary NameID: Impary NameID: Impary NameID: Instructions of Lagrance Impary NameID: Impary NameID: Impary NameID: Instructions of Lagrancot Impary NameID: Impary NameI									
Mpary Name: Project Contact: Sampler's Signiture: Light foo (Dn S(L) Hing Anc Project Contact: Sampler's Signiture: Light foo (Dn S(L) Hing Anc Brock and A Project Contact: Light foo (Dn S(L) Hing Anc Brock and A Project Contact: Light foo (Dn S(L) Hing Anc Brock and A Project Contact: Light foo (Dn S(L) Hing Anc Brock and A Project Contact: Light foo (Dn S(L) Hing Anc Brock and A Project Contact: Light foo (Dn S(L) Hing Anc Brock and A Project Contact: Light foo (Dn S(L) Hing Anc Cart Buc Itel: 40/9 - 522 + 875 Light foo (Dn S(L) Hing Anc Cart Buc Difference Light foo (Dn S(L) Hing Anc Cart Buc Difference Light foo (Dn S(L) Hing Anc Cart Buc Difference Industried by: Light foo (Dn S(L) Hing Anc Difference Inquisted by: Light foo (Dn S(L) Hing Anc Difference Inquisted by: Light foo (D Buc) Dither					_				
mpany Name: Project Contact: Project Contact: Sampler's Signature: Cued type The contact: The contact: The contact: The contact: Cued type Conscu / type The contact: The contact: The contact: Cued type Conscu / type The contact: The contact: The contact: Cued type Conscu / type The contact: The contact: The contact: Cued type The contact: The contact: The contact: The contact: Cued type The contact: The contact: The contact: The contact: Cued type The contact: The contact: The contact: The contact: Cued type The contact: The contact: The contact: The contact: Contact: The contact: The contact: The contact: The contact: Contact: The contact: The contact: The contact: The contact: Contact: The contact: The contact: The contact: The contact: Contact: The contact: The contact: The contact: The contact: Contact: The contact: The contact: The contact: The contact: Contact: The contact: The					-				
mpany Name: mpany Name: Cight browner: Dischart: Vistate/Zip: Handle: Manual Contents K Vistate/Zip: Handle: Manual Contents K									
dress: 1632 Actual St Sut B4 Tel: 909-527-875 Project Name/ID: (032.6.00) //State/Zip: <i>handue (032.6.00)</i> //State/Zip: <i>handue (134.4730) EaxlEmail:</i> //state/Zip: <i>handue (134.4730) EaxlEmail:</i> //state/Zip: <i>handue (134.4730) (134.4730)</i> //state/Zip: <i>handue (134.4730) (134.4700)</i> /iquished by: <i>handue (134.4700) (134.4000)</i> // received by: <i>A A (134.4000)</i> // received by: <i>A (134.4000) (134.4000)</i> // received by: <i>A (134.4000) (134.4000)</i> // received by: <i>(144.4000) (144.4000) (144.4000)</i> // received by: <	cighton Consulting	Znc		a.	Plact Con	tact: Abre	and to Sam	pler's Signature:	0 10
Vistate/Zip: Manufactor Ustate/A V/F330 Fax/Email: Fax/Emailie Fax/Emailie Fax/Emailie <td>tress: 10532 Acada St S</td> <td>rute be</td> <td></td> <td>4</td> <td>el: 909</td> <td>-527-875</td> <td>S</td> <td>ect Name/ID:</td> <td>Kreex</td>	tress: 10532 Acada St S	rute be		4	el: 909	-527-875	S	ect Name/ID:	Kreex
Induished by: <i>but and the line of the</i> A marked by: <i>but a time of the</i> ample storage Atter Analysis inquished by <i>a t but a but </i>	VIStatelZip: handre Cucano	Maa CA	91730	Ц.	ax/Email:	FACEMAN D	1 ziglatsaman	- CALAN MET 1	Third . SI
Inquished by Received by: Received by: Date & Time: A. P. Inquished by: Industries A. A. C. Dispose of O Return to Client O Store (30 Days)	inquished by: Bruanna Carla	Z	Received by	4	THX		Date & Time 10/11/10	Instructions for Sample Stores	is Mor Analysis
Inquished by: 0 Other: 0 Other:	inquished by a pl A		Received by			Son al	Date & Time: 100,000	O Dispose of O Return to Client	O Store (30 Days)
	inquished by:		Received by	2.1)	Date & Time:	O Other:	

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

Date: November 19, 2018

Mr. Zachary Freeman Leighton Consulting, Inc. 10532 Acacia, Suite B-6 Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

Project: SR-60 & Theodore St Interchange Project No.: 10326.001 Lab I.D.: 181112-10 through -37

Dear Mr. Freeman:

The **analytical results** for the soil and water samples, received by our lab on November 12, 2018, are attached. The samples were received chilled, intact and with chain of custody record.

Trace concentrations between the MDL and the PQL have been reported with a $^{*}J^{\prime\prime}$ flag indicator.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtis Desilets Vice President/Program Manger

Andy Wahy Laboratory Manager

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT:SR-60 & Theodore St InterchangePROJECT No.:10326.001DATERECEIVED:MATRIX:SOILSAMPLING DATE:11/10/18REPORT TO:MR. ZACHARY FREEMANDATEREPORTED:Line11/19/18

TOTAL PETROLEUM HYDROCARBONS(TPH) - CARBON CHAIN ANALYSIS METHOD: EPA 8015B

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE I.D.	LAB I.D.	C4-C10	C11-C22	C23-C35	DF
MWD1-0.5	181112-14	ND	ND	ND	1
MWD1-5.0	<u>181112-15</u>	ND	ND	ND	1
MWD1-10.0	181112-16	ND	ND	ND	1
MWD501-5.0	181112-18	ND	ND	ND	1
MWD002-0.5	181112-19	ND	ND	ND	1
MWD002-5.0	181112-20	ND	ND	ND	1
MWD002-10.0	181112-21	ND	ND	ND	1
MWD003-0.5	181112-22	ND	ND	ND	1
MWD003-5.0	181112-23	ND	ND	ND	1
MWD003-10.0	181112-24	ND	ND	ND	1
MWD004-0.5	181112-25	ND	ND	ND	1
MWD004-5.0	<u>181112-26</u>	ND	ND	ND	1
MWD004-10.0	181112-27	ND	ND	ND	1
MWD504-5.0	181112-28	ND	ND	ND	1
ETHOD BLANK		ND	ND	ND	1
	MDL	5	5	25	
	PQL	10	10	50	

COMMENTS

C4-C10 = GASOLINE RANGE C11-C22 = DIESEL RANGE C23-C35 = MOTOR OIL RANGE DF = DILUTION FACTOR MDL = METHOD DETECTION LIMIT PQL = PRACTICAL QUANTITATION LIMIT J = TRACE CONCENTRATION BETWEEN MDL AND PQL ACTUAL DETECTION LIMIT = DF X PQL ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT Data Reviewed and Approved by:

CAL-DHS ELAP CERTIFICATE No.: 1555

				Enviro Che	em, Inc				
1214 E. Le	exington	Avenue,	Pomona	, CA 9176	6 Те	I (909)590)-5905	Fax (909)5	90-5907
		8	3015E	3 QA/C	C Re	eport			
Date Analyzed	ł:	<u>11/14-15</u>	/2018				Units:	mg/Kg (p	opm)
Matrix:	<u>Soil/</u>	Solid/	Sludg	ge/Liqu	uid				
Matrix Spike (MS)/Mat	rix Spike I	Duplicate	e (MSD)		_			
Spiked Sampl	e Lab I.C	D.:	1811	12-14 M	IS/MS	D			
Analyte	SR	spk conc	MS	%MS	MSD	%MSD	%RPD	ACP %MS	ACP RPD
LCS STD REC Analyte C10~C28 Range	OVERY: spk conc 200	LCS	% REC 95%	ACP 75-125					
Analyzed and Final Reviewe	Reviewe r:	ed By:	2						

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc. 10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com PROJECT: SR-60 & Theodore St Interchange PROJECT No.: 10326.001 MATRIX:SOIL DATE RECEIVED:11/12/18 SAMPLING DATE:11/10/18 DATE REPORT CO:MR. ZACHARY FREEMAN DATE REPORTED:11/19/18

> EPA 6010B FOR TTLC-ARSENIC UNITS: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE I.D.	LAB I.D.	ARSENIC RESULT	DF
P025-0.5	181112-10	2.29	1
P026-0.5	181112-12	2,68	1
P027-0.5	181112-29	3.22	1
P028-0.5	181112-31	4.44	1
<u>P528-0.5</u>	181112-33	5.24	1
P020-0.5	181112-35	2.32	1
Method Blank		ND	1

0.248

0.30

MDL	
PQL	

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit J = Trace Concentration between MDL and PQL Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration STLC Limit for Arsenic = 5 PPM * = STLC analysis <u>is</u> recommended (if marked) *** = The concentration exceeds the TTLC Limit @ 500 PPM, therefore the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked)

N Data Reviewed and Approved by: CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St PROJECT No.: 10326.001	Interchange	
MATRIX: <u>SOIL</u>	DATE	RECEIVED: <u>11/12/18</u>
SAMPLING DATE: <u>11/10/18</u>	DATE	ANALYZED: <u>11/13&14/18</u>
REPORT TO: <u>MR. ZACHARY FREEMAN</u>	DATE	REPORTED: <u>11/19/18</u>

SAMPLE I.D.: MWD1-0.5

LAB I.D.: 181112-14

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT ANALYZED	SAMPLE RESULT	POT.	MDT.	שת	TTLC	STLC	EPA
Antimony (Sb)	ND	1.0	0.250	1	500	15	METHOD
Arsenic (As) Barium (Ba) Beryllium (Be) Cadmium (Cd) Chromium Total (Cr) Chromium VI (Cr6) Cobalt (Co) Copper (Cu) Lead (Pb) Mercury (Hg) Molybdenum (Mo) Nickel (Ni)	ND 0.242J 58.7 ND ND 32.8 10.6 15.9 2.51 ND ND 11.7	$ \begin{array}{c} 1.0\\ 0.3\\ 5.0\\ 0.5\\ 0.5\\ 0.2\\ 1.0\\ 1.0\\ 0.5\\ 0.01\\ 5.0\\ 2.5\\ \end{array} $	0.250 0.248 0.143 0.180 0.119 0.138 0.0156 0.156 0.203 0.192 0.0062 0.274 0.165	1 1 1 1 1 1 1 1 1 1	500 500 10,000 75 100 2,500 500 8,000 2,500 1,000 20 3,500	15 5.0 100 0.75 1.0 560/5@ 5.0 80 25 5.0 0.2 350	60108 60108 60108 60108 60108 60108 60108 60108 60108 7471A 60108
Selenium(Se) Silver(Ag) Thallium(Tl) Vanadium(V) Zinc(Zn)	ND ND ND 60.7 46.7	1.0 1.0 1.0 5.0 0.5	0.234 0.414 0.432 0.171 0.131	1 1 1 1 1	2,000 100 500 700 2,400 5,000	20 1.0 5.0 7.0 24 250	6010B 6010B 6010B 6010B 6010B 6010B

COMMENTS

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit J = Trace Concentration between MDL and PQL Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) --- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

SR-60 & Theodore St Interchange PROJECT: PROJECT No.: 10326.001 MATRIX: SOIL SAMPLING DATE:11/10/18

DATE RECEIVED: 11/12/18 DATE ANALYZED:11/13&14/18 REPORT TO:<u>MR. ZACHARY FREEMAN</u> DATE REPORTED:<u>11/19/18</u>

SAMPLE I.D.: MWD1-5.0

LAB I.D.: 181112-15

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE				TTLC	STLC	EPA
ANALYZED	RESULT	PQL	MDL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	0.250	1	500	1.5	6010B
Arsenic(As)	2.06	0.3	0.248	1	500	5.0	6010B
Barium(Ba)	38.3	5.0	0.143	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	0.180	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	0.119	1	100	1.0	6010B
Chromium Total(Cr)	14.2	0.5	0.138	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.2	0.0156	1	500	5.0	7196A
Cobalt(Co)	6.33	1.0	0.156	1	8,000	80	6010B
Copper(Cu)	11.8	1.0	0.203	1	2,500	2.5	6010B
Lead(Pb)	5.22	0.5	0.192	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	0.0062	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	0.274	1	3,500	350	6010B
Nickel(Ni)	7.14	2.5	0.165	1	2,000	2.0	6010B
Selenium(Se)	ND	1.0	0.234	1	100	1.0	6010B
Silver(Ag)	ND	1.0	0.414	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	0.432	1	700	7.0	6010B
Vanadium(V)	28.5	5.0	0.171	1	2,400	24	6010B
Zinc(Zn)	35.4	0.5	0.131	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit J = Trace Concentration between MDL and PQL Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St Interchange PROJECT No.: 10326.001 MATRIX: SOIL SAMPLING DATE: <u>11/10/18</u> REPORT TO:<u>MR. ZACHARY FREEMAN</u> DATE REPORTED:<u>11/19/18</u>

DATE RECEIVED: 11/12/18 DATE ANALYZED:11/13&14/18

SAMPLE I.D.: MWD1-10.0

LAB I.D.: 181112-16 _____

> TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE				TTLC	STLC	EPA
ANALYZED	RESULT	PQL	MDL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	0.250	1	500	15	6010B
Arsenic(As)	2.59	0.3	0.248	1	500	5.0	6010B
Barium(Ba)	68.1	5.0	0.143	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	0.180	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	0.119	1	100	1.0	6010B
Chromium Total(Cr)	33.3	0.5	0.138	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.2	0.0156	1	500	5.0	7196A
Cobalt(Co)	8.95	1.0	0.156	1	8,000	80	6010B
Copper(Cu)	16.6	1.0	0.203	1	2,500	25	6010B
Lead(Pb)	3.53	0.5	0.192	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	0.0062	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	0.274	1	3,500	350	6010B
Nickel(Ni)	17.6	2.5	0.165	1	2,000	20	6010B
Selenium(Se)	ND	1.0	0.234	1	100	1.0	6010B
Silver(Ag)	ND	1.0	0.414	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	0.432	1	700	7.0	6010B
Vanadium(V)	37.0	5.0	0.171	1	2,400	24	6010B
Zinc(Zn)	45.0	0.5	0.131	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit J = Trace Concentration between MDL and PQL Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St PROJECT No.: 10326.001	Interchange	
MATRIX: <u>SOIL</u> SAMPLING DATE: <u>11/10/18</u> REPORT TO: <u>MR. ZACHARY FREEMAN</u>	DATE F DATE A DATE F	RECEIVED: <u>11/12/18</u> ANALYZED: <u>11/13&14/18</u> REPORTED: <u>11/19/18</u>

SAMPLE I.D.: MWD501-5.0

LAB I.D.: 181112-18

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE				TTLC	STLC	EPA
ANALYZED	RESULT	PQL	MDL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	0.250	1	500	15	6010B
Arsenic(As)	1.71	0.3	0.248	1	500	5 0	6010B
Barium(Ba)	42.7	5.0	0.143	1	10.000	100	6010B
Beryllium(Be)	ND	0.5	0.180	1	75	0 75	6010B
Cadmium(Cd)	ND	0.5	0.119	1	100	1 0	6010B
Chromium Total(Cr)	16.1	0.5	0.138	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.2	0.0156	1	500	5.0	7196A
Cobalt(Co)	6.52	1.0	0.156	1	8,000	80	6010B
Copper(Cu)	10.9	1.0	0.203	1	2,500	25	6010B
Lead(Pb)	3.88	0.5	0.192	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	0.0062	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	0.274	1	3,500	350	6010B
Nickel(Ni)	7.57	2.5	0.165	1	2,000	20	6010B
Selenium(Se)	ND	1.0	0.234	1	100	1.0	6010B
Silver(Ag)	ND	1.0	0.414	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	0.432	1	700	7.0	6010B
Vanadium(V)	28.1	5.0	0.171	1	2,400	24	6010B
Zinc(Zn)	36.2	0.5	0.131	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit J = Trace Concentration between MDL and PQL Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St Interchange PROJECT No.: 10326.001 MATRIX: SOIL SAMPLING DATE: 11/10/18 REPORT TO:<u>MR. ZACHARY FREEMAN</u> DATE REPORTED:<u>11/19/18</u>

DATE RECEIVED: 11/12/18 DATE ANALYZED: <u>11/13&14/18</u>

SAMPLE I.D.: MWD002-0.5

LAB I.D.: 181112-19

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE				TTLC	STLC	EPA
ANALYZED	RESULT	PQL	MDL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	0.250	1	500	15	6010B
Arsenic(As)	0.640	0.3	0.248	1	500	5.0	6010B
Barium(Ba)	57.3	5.0	0.143	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	0.180	1	75	0.75	6010B
Cadmium (Cd)	ND	0.5	0.119	1	100	1.0	6010B
Chromium Total(Cr)	35.9	0.5	0.138	1	2,500	560/50	6010B
Chromium VI (Cr6)	22	0.2	0.0156	1	500	5.0	7196A
Cobalt(Co)	10.6	1.0	0.156	1	8,000	80	6010B
Copper(Cu)	16.0	1.0	0.203	1	2,500	25	6010B
Lead(Pb)	3.16	0.5	0.192	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	0.0062	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	0.274	1	3,500	350	6010B
Nickel(Ni)	14.9	2.5	0.165	1	2,000	20	6010B
Selenium(Se)	ND	1.0	0.234	1	100	1.0	6010B
Silver(Ag)	ND	1.0	0.414	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	0.432	1	700	7.0	6010B
Vanadium(V)	50.1	5.0	0.171	1	2,400	24	6010B
Zinc(Zn)	49.2	0.5	0.131	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit J = Trace Concentration between MDL and POL Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St Interchange

PROJECT No.: 10326.001

MA	TF	I	Х	:	S	0	Ι	L
					_			_

SAMPLIN	IG	DATE:	11/10/18		
REPORT	ТО	:MR.	ZACHARY	FREEMAN	

DATE RECEIVED:<u>11/12/18</u> DATE ANALYZED:<u>11/13&14/18</u> DATE REPORTED:<u>11/19/18</u>

SAMPLE I.D.: MWD002-5.0

LAB I.D.: 181112-20

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE				TTLC	STLC	EPA
ANALYZED	RESULT	PQL	MDL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	0.250	1	500	15	6010B
Arsenic(As)	0.728	0.3	0.248	1	500	5.0	6010B
Barium(Ba)	41.6	5.0	0.143	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	0.180	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	0.119	1	100	1.0	6010B
Chromium Total(Cr)	25.9	0.5	0.138	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.2	0.0156	1	500	5.0	7196A
Cobalt(Co)	9.25	1.0	0.156	1	8,000	80	6010B
Copper(Cu)	17.9	1.0	0.203	1	2,500	25	6010B
Lead(Pb)	2.54	0.5	0.192	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	0.0062	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	0.274	1	3,500	350	6010B
Nickel(Ni)	10.7	2.5	0.165	1	2,000	20	6010B
Selenium(Se)	ND	1.0	0.234	1	100	1.0	6010B
Silver(Ag)	ND	1.0	0.414	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	0.432	1	700	7.0	6010B
Vanadium(V)	48.6	5.0	0.171	1	2,400	24	6010B
Zinc(Zn)	42.3	0.5	0.131	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit J = Trace Concentration between MDL and PQL Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) *** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St	Interchange	
PROJECT No.: 10326.001	2	
MATRIX: SOIL	DATE	RECEIVED:11/12/18
SAMPLING DATE: <u>11/10/18</u>	DATE	ANALYZED: 11/13&14
REPORT TO: MR. ZACHARY FREEMAN	DATE	REPORTED: 11/19/18

SAMPLE I.D.: MWD002-10.0

LAB I.D.: 181112-21

1/13&14/18 1/19/18

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE				TTLC	STLC	EPA
ANALYZED	RESULT	PQL	MDL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	0.250	1	500	15	6010B
Arsenic(As)	2.22	0.3	0.248	1	500	5.0	6010B
Barium(Ba)	30.8	5.0	0.143	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	0.180	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	0.119	1	100	1.0	6010B
Chromium Total(Cr)	10.5	0.5	0.138	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.2	0.0156	1	500	5.0	7196A
Cobalt(Co)	4.61	1.0	0.156	1	8,000	80	6010B
Copper(Cu)	8.37	1.0	0.203	1	2,500	25	6010B
Lead(Pb)	2.34	0.5	0.192	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	0.0062	1	. 20	0.2	7471A
Molybdenum(Mo)	ND	5.0	0.274	1	3,500	350	6010B
Nickel(Ni)	5.44	2.5	0.165	1	2,000	20	6010B
Selenium(Se)	ND	1.0	0.234	1	100	1.0	6010B
Silver(Ag)	ND	1.0	0.414	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	0.432	1	700	7.0	6010B
Vanadium(V)	20.7	5.0	0.171	1	2,400	24	6010B
Zinc(Zn)	24.2	0.5	0.131	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit J = Trace Concentration between MDL and PQL Actual Detection Limit = POL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal is recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St Interchange

PROJECT No.: 10326.001	
MATRIX: SOIL	DATE RECEIVED:11/12/18
SAMPLING DATE: <u>11/10/18</u>	DATE ANALYZED: 11/13&14/18
REPORT TO: MR. ZACHARY FREEMAN	DATE REPORTED:11/19/18
	Catalog a constant of the second states and the

SAMPLE I.D.: MWD003-0.5

LAB I.D.: 181112-22

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE				TTLC	STLC	EPA
ANALYZED	RESULT	PQL	MDL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	0.250	1	500	15	6010B
Arsenic(As)	2.37	0.3	0.248	1	500	5.0	6010B
Barium(Ba)	46.6	5.0	0.143	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	0.180	1	. 75	0.75	6010B
Cadmium(Cd)	ND	0.5	0.119	1	100	1.0	6010B
Chromium Total(Cr)	16.7	0.5	0.138	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.2	0.0156	1	500	5.0	7196A
Cobalt(Co)	6.89	1.0	0.156	1	8,000	80	6010B
Copper(Cu)	12.8	1.0	0.203	1	2,500	25	6010B
Lead(Pb)	5.85	0.5	0.192	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	0.0062	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	0.274	1	3,500	350	6010B
Nickel(Ni)	8.21	2.5	0.165	1	2,000	20	6010B
Selenium(Se)	ND	1.0	0.234	1	100	1.0	6010B
Silver(Ag)	ND	1.0	0.414	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	0.432	1	700	7.0	6010B
Vanadium(V)	31.7	5.0	0.171	1	2,400	24	6010B
Zinc(Zn)	37.5	0.5	0.131	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit J = Trace Concentration between MDL and PQL Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal is recommended (if marked) *** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) --- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc. 10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St Interchange PROJECT No.: 10326.001

MATRIX: SOIL	DATE RECEIVED: <u>11/12/18</u>
SAMPLING DATE: <u>11/10/18</u>	DATE ANALYZED: <u>11/13&14/18</u>
REPORT TO: MR. ZACHARY FREEMAN	DATE REPORTED: <u>11/19/18</u>

SAMPLE I.D.: MWD003-5.0

LAB I.D.: 181112-23

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE				TTLC	STLC	EPA
ANALYZED	RESULT	PQL	MDL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	0.250	1	500	15	6010B
Arsenic(As)	2.57	0.3	0.248	1	500	5.0	6010B
Barium(Ba)	47.3	5.0	0.143	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	0.180	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	0.119	1	100	1.0	6010B
Chromium Total(Cr)	15.9	0.5	0.138	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.2	0.0156	1	500	5.0	7196A
Cobalt(Co)	6.84	1.0	0.156	1	8,000	80	6010B
Copper(Cu)	12.1	1.0	0.203	1	2,500	25	6010B
Lead(Pb)	2.86	0.5	0.192	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	0.0062	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	0.274	1	3,500	350	6010B
Nickel(Ni)	8.43	2.5	0.165	1	2,000	20	6010B
Selenium(Se)	ND	1.0	0.234	1	100	1.0	6010B
Silver(Ag)	ND	1.0	0.414	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	0.432	1	700	7.0	6010B
Vanadium(V)	32.1	5.0	0.171	1	2,400	24	6010B
Zinc(Zn)	32.8	0.5	0.131	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit J = Trace Concentration between MDL and PQL Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) *** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc. 10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St Interchange

PROJECT No.: 10326.001

MATRIX: <u>SOIL</u>	DATE RECEIVED:11/12/18
SAMPLING DATE: <u>11/10/18</u>	DATE ANALYZED:11/13&14/18
REPORT TO: MR. ZACHARY FREEMAN	DATE REPORTED: 11/19/18

SAMPLE I.D.: MWD003-10.0

LAB I.D.: 181112-24

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE		0.500023		TTLC	STLC	EPA
ANALYZED	RESULT	PQL	MDL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	0.250	1	500	15	6010B
Arsenic(As)	2.25	0.3	0.248	1	500	5.0	6010B
Barium(Ba)	34.8	5.0	0.143	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	0.180	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	0.119	1	100	1.0	6010B
Chromium Total(Cr)	13.1	0.5	0.138	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.2	0.0156	1	500	5.0	7196A
Cobalt(Co)	5.49	1.0	0.156	1	8,000	80	6010B
Copper(Cu)	9.26	1.0	0.203	1	2,500	25	6010B
Lead(Pb)	2.42	0.5	0.192	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	0.0062	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	0.274	1	3,500	350	6010B
Nickel(Ni)	6.51	2.5	0.165	1	2,000	20	6010B
Selenium(Se)	ND	1.0	0.234	1	100	1.0	6010B
Silver(Ag)	ND	1.0	0.414	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	0.432	1	700	7.0	6010B
Vanadium(V)	24.2	5.0	0.171	1	2,400	24	6010B
Zinc(Zn)	27.5	0.5	0.131	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit J = Trace Concentration between MDL and PQL Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) *** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc. 10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel (909) 527-8785 E-Mail: ZFreeman@Leightongroup.com

SR-60 & Theodore St Interchange PROJECT:

PROJECT No.: 10326.001

MA	TR	Ι	Х	1	S	0	Ι	L
								_

SAMPLING DATE:<u>11/1</u>0/18

DATE RECEIVED: <u>1</u>1/12/18 SAMPLING DATE:11/10/18DATE ANALYZED:11/13&14/18REPORT TO:MR. ZACHARY FREEMANDATE REPORTED:11/19/18

SAMPLE I.D.: MWD004-0.5

LAB I.D.: 181112-25

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE				TTLC	STLC	EPA
ANALYZED	RESULT	PQL	MDL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	0.250	1	500	15	6010B
Arsenic(As)	2.38	0.3	0.248	1	500	5.0	6010B
Barium(Ba)	67.4	5.0	0.143	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	0.180	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	0.119	1	100	1.0	6010B
Chromium Total(Cr)	21.6	0.5	0.138	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.2	0.0156	1	500	5.0	7196A
Cobalt(Co)	9.10	1.0	0.156	1	8,000	80	6010B
Copper(Cu)	18.2	1.0	0.203	1	2,500	25	6010B
Lead(Pb)	7.41	0.5	0.192	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	0.0062	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	0.274	1	3,500	350	6010B
Nickel(Ni)	11.4	2.5	0.165	1	2,000	20	6010B
Selenium(Se)	ND	1.0	0.234	1	100	1.0	6010B
Silver(Ag)	ND	1.0	0.414	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	0.432	1	700	7.0	6010B
Vanadium(V)	39.1	5.0	0.171	1	2,400	24	6010B
Zinc(Zn)	50.2	0.5	0.131	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit J = Trace Concentration between MDL and PQL Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc. 10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730

Tel (909) 527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT:	SF	۹-60	&	Theodore	St	Interchange
PROJECT NO	. :	1032	26	.001		

MATRIX: <u>SOIL</u>	DATE RECEIVED: <u>11/12/18</u>
SAMPLING DATE: <u>11/10/18</u>	DATE ANALYZED: 11/13&14/18
REPORT TO: MR. ZACHARY FREEMAN	DATE REPORTED: 11/19/18

SAMPLE I.D.: MWD004-5.0

LAB I.D.: 181112-26

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE				TTLC	STLC	EPA
ANALYZED	RESULT	PQL	MDL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	0.250	1	500	15	6010B
Arsenic(As)	1.47	0.3	0.248	1	500	5.0	6010B
Barium(Ba)	23.4	5.0	0.143	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	0.180	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	0.119	1	100	1.0	6010B
Chromium Total(Cr)	9.62	0.5	0.138	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.2	0.0156	1	500	5.0	7196A
Cobalt(Co)	3.99	1.0	0.156	1	8,000	80	6010B
Copper(Cu)	6.47	1.0	0.203	1	2,500	25	6010B
Lead(Pb)	1.70	0.5	0.192	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	0.0062	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	0.274	1	3,500	350	6010B
Nickel(Ni)	4.79	2.5	0.165	1	2,000	20	6010B
Selenium(Se)	ND	1.0	0.234	1	100	1.0	6010B
Silver(Ag)	ND	1.0	0.414	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	0.432	1	700	7.0	6010B
Vanadium(V)	17.0	5.0	0.171	1	2,400	24	6010B
Zinc(Zn)	22.8	0.5	0.131	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit J = Trace Concentration between MDL and PQL Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) *** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT:SR-60 & Theodore St InterchangePROJECT No.:10326.001MATRIX:DATE RECEIVED:SAMPLING DATE:11/10/18REPORT TO:MR. ZACHARY FREEMANDATE REPORTED:11/19/18

SAMPLE I.D.: MWD004-10.0

LAB I.D.: 181112-27

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE				TTLC	STLC	EPA
ANALYZED	RESULT	PQL	MDL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	0.250	1	500	15	6010B
Arsenic(As)	2.19	0.3	0.248	1	500	5.0	6010B
Barium(Ba)	24.3	5.0	0.143	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	0.180	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	0.119	1	100	1.0	6010B
Chromium Total(Cr)	9.67	0.5	0.138	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.2	0.0156	1	500	5.0	7196A
Cobalt(Co)	4.09	1.0	0.156	1	8,000	8.0	6010B
Copper(Cu)	7.08	1.0	0.203	1	2,500	25	6010B
Lead(Pb)	1.76	0.5	0.192	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	0.0062	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	0.274	1	3,500	350	6010B
Nickel(Ni)	4.58	2.5	0.165	1	2,000	20	6010B
Selenium(Se)	ND	1.0	0.234	1	100	1.0	6010B
Silver(Ag)	ND	1.0	0.414	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	0.432	1	700	7.0	6010B
Vanadium(V)	18.0	5.0	0.171	1	2,400	24	6010B
Zinc(Zn)	21.3	0.5	0.131	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit J = Trace Concentration between MDL and PQL Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) *** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) --- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT:SR-60 & Theodore St InterchangePROJECT No.:10326.001MATRIX:DATESAMPLING DATE:11/10/18REPORT TO:MR. ZACHARY FREEMANDATE RE

DATE RECEIVED:<u>11/12/18</u> DATE ANALYZED:<u>11/13&14/18</u> DATE REPORTED:<u>11/19/18</u>

SAMPLE I.D.: MWD504-5.0

LAB I.D.: 181112-28

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE				TTLC	STLC	EPA
ANALYZED	RESULT	PQL	MDL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	0.250	1	500	15	6010B
Arsenic(As)	2.26	0.3	0.248	1	500	5.0	6010B
Barium(Ba)	35.2	5.0	0.143	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	0.180	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	0.119	1	100	1.0	6010B
Chromium Total(Cr)	13.4	0.5	0.138	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.2	0.0156	1	500	5.0	7196A
Cobalt(Co)	5.48	1.0	0.156	1	8,000	80	6010B
Copper(Cu)	11.6	1.0	0.203	1	2,500	25	6010B
Lead(Pb)	2.90	0.5	0.192	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	0.0062	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	0.274	1	3,500	350	6010B
Nickel(Ni)	6.33	2.5	0.165	1	2,000	20	6010B
Selenium(Se)	ND	1.0	0.234	1	100	1.0	6010B
Silver(Ag)	ND	1.0	0.414	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	0.432	1	700	7.0	6010B
Vanadium(V)	24.6	5.0	0.171	1	2,400	24	6010B
Zinc(Zn)	28.8	0.5	0.131	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit J = Trace Concentration between MDL and PQL Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St Interchange

PROJECT No.: 10326.001	
MATRIX: <u>SOIL</u>	DATE RECEIVED: <u>11/12/18</u>
SAMPLING DATE: <u>11/10/18</u>	DATE ANALYZED: 11/13&14/18
REPORT TO: MR. ZACHARY FREEMAN	DATE REPORTED: 11/19/18

METHOD BLANK FOR LAB I.D.: 181112-14, -15, -16, -18 THROUGH -28

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE				TTLC	STLC	EPA
ANALYZED	RESULT	PQL	MDL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	0.250	1	500	15	6010B
Arsenic(As)	ND	0.3	0.248	1	500	5.0	6010B
Barium(Ba)	ND	5.0	0.143	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	0.180	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	0.119	1	100	1.0	6010B
Chromium Total(Cr)	ND	0.5	0.138	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.2	0.0156	1	500	5.0	7196A
Cobalt(Co)	ND	1.0	0.156	1	8,000	80	6010B
Copper(Cu)	ND	1.0	0.203	1	2,500	25	6010B
Lead(Pb)	ND	0.5	0.192	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	0.0062	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	0.274	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	0.165	1	2,000	20	6010B
Selenium(Se)	ND	1.0	0.234	1	100	1.0	6010B
Silver(Ag)	ND	1.0	0.414	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	0.432	1	700	7.0	6010B
Vanadium(V)	ND	5.0	0.171	1	2,400	24	6010B
Zinc(Zn)	ND	0.5	0.131	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit J = Trace Concentration between MDL and PQL Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) *** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested
latrix Spike/ N Metals A Mercury A	atrix Spike nalysis Date : nalysis Date :	Duplicat 11/14/2018 11/13/2018	e/ LCS :						Unit	: <u>mg/Kg(p</u>	(ma
Analysis	Spk.Sample	LCS	LCS	rcs	Sample	Spike	WS	% Rec	MSD	% Rec	% RPD
Antimony (Sb)	181112-21	50 0	%Kec.	STATUS	Result	Conc.	20.4	MS 4040/	1.72	MSD	100
Arsenic (As)	181112-21	50.0	112	PASS	2 22	20	4.00	101 %	0.10	103%	2%
Barium (Ba)	181112-21	50.0	104	PASS	30.8	20	77.8	0/ 701	76.7	- 02%	0/27
Beryllium (Be)	181112-21	50.0	66	PASS	0	50	47.4	95%	48.5	%26	2%
Cadmium (Cd)	181112-21	50.0	115	PASS	0	50	51.8	104%	52.7	105%	2%
Chromium (Cr)	181112-21	50.0	103	PASS	10.5	50	58.2	95%	58.7	96%	1%
Cobalt (Co)	181112-21	50.0	110	PASS	4.61	50	53.5	98%	54.4	100%	2%
Copper (Cu)	181112-21	50.0	100	PASS	8.37	50	55.7	95%	55.1	93%	1%
Lead (Pb)	181112-21	50.0	110	PASS	2.34	50	47.8	91%	47.4	90%	1%
Mercury (Hg)	181113-14	0.125	98	PASS	0	0.125	0.114	91%	0.109	87%	4%
Molybdenum(Mo)	181112-21	50.0	108	PASS	0	50	50.3	101%	51.4	103%	2%
Nickel (Ni)	181112-21	50.0	98	PASS	5.44	50	53.2	96%	52.6	94%	1%
Selenium (Se)	181112-21	50.0	110	PASS	0	50	49.4	66%	50.6	101%	2%
Silver (Ag)	181112-21	5.0	102	PASS	0	5.0	4.00	80%	4.17	83%	4%
Thallium (TI)	181112-21	50.0	105	PASS	0	50	44.7	89%	45.6	91%	2%
Vanadium (V)	181112-21	50.0	102	PASS	20.7	50	69.1	97%	70.3	66%	2%
Zinc (Zn)	181112-21	50.0	114	PASS	24.2	50	74.4	100%	75.4	102%	2%
					A	NALYST	1	0			
-ail due to matrix int∈ terl CS is in control ti	brference	loutuoo ai or			Ĺ			8		I	
	וופו בוכוב ובסמונה מ				L	INAL REVIE	WEK:) ·			

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St	Interchange
PROJECT No.: 10326.001	DATE RECEIVED: 11/12/18
MATRIX: SOIL	DATE EXTRACTED: 11/13/18
SAMPLING DATE: <u>11/10/18</u>	DATE ANALYZED:11/13/18
REPORT TO: MR. ZACHARY FREEMAN	DATE REPORTED: 11/19/18
CANDIN T D . DOOL O F	

SAMPLE I.D.: **P025-0.5**

LAB I.D.: 181112-10

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	MDL	DF
Aldrin	ND	0.001	0.0001	1
alpha-BHC	ND	0.001	0.0002	1
beta-BHC	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
delta-BHC	ND	0.001	0.0002	1
alpha-Chlordane	ND	0.001	0.0002	1
gamma-Chlordane	ND	0.001	0.0001	1
Technical Chlordane	ND	0.005	0.0005	1
4,4'-DDD	ND	0.001	0.0003	1
4,4'-DDE	ND	0.001	0.0003	1
4,4'-DDT	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0003	1
<u>Endosulfan I</u>	ND	0.001	0.0002	1
Endosulfan II	ND	0.001	0.0001	1
<u>Endosulfan Sulfate</u>	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0004	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0003	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St	Interchange
PROJECT No.: 10326.001	DATE RECEIVED: <u>11/12/18</u>
MATRIX: SOIL	DATE EXTRACTED: <u>11/13/18</u>
SAMPLING DATE: <u>11/10/18</u>	DATE ANALYZED: <u>11/13/18</u>
REPORT TO: MR. ZACHARY FREEMAN	DATE REPORTED: <u>11/19/18</u>

SAMPLE I.D.: **P026-0.5**

LAB I.D.: 181112-12

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	MDL	DF
Aldrin	ND	0.001	0.0001	1
alpha-BHC	ND	0.001	0.0002	1
beta-BHC	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
delta-BHC	ND	0.001	0.0002	1
alpha-Chlordane	ND	0.001	0.0002	1
gamma-Chlordane	ND	0.001	0.0001	1
Technical Chlordane	ND	0.005	0.0005	1
4,4'-DDD	ND	0.001	0.0003	1
4,4'-DDE	ND	0.001	0.0003	1
4,4'-DDT	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0003	1
Endosulfan I	ND	0.001	0.0002	1
Endosulfan II	ND	0.001	0.0001	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0004	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0003	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St	Interchange	
PROJECT No.: 10326.001	DATE	RECEIVED: <u>11/12</u> /18
MATRIX: <u>SOIL</u>	DATE	EXTRACTED: 11/13/18
SAMPLING DATE: <u>11/10/18</u>	DATE	ANALYZED: 11/13/18
REPORT TO: MR. ZACHARY FREEMAN	DATE	REPORTED: 11/19/18

SAMPLE I.D.: MWD1-0.5

LAB I.D.: 181112-14

Organochlorine Pesticides Analysis

method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	MDL	DF
Aldrin	ND	0.001	0.0001	1
alpha-BHC	ND	0.001	0.0002	1
beta-BHC	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
<u>delta-BHC</u>	ND	0.001	0.0002	1
alpha-Chlordane	ND	0.001	0.0002	1
gamma-Chlordane	ND	0.001	0.0001	1
Technical Chlordane	ND	0.005	0.0005	1
4,4'-DDD	ND	0.001	0.0003	1
4,4'-DDE	ND	0.001	0.0003	1
4,4'-DDT	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0003	1
Endosulfan I	ND	0.001	0.0002	1
Endosulfan II	ND	0.001	0.0001	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0004	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
<u>Heptachlor Epoxide</u>	ND	0.001	0.0003	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St	Interchange
PROJECT No.: 10326.001	DATE RECEIVED: <u>11/12/18</u>
MATRIX: <u>SOIL</u>	DATE EXTRACTED: <u>11/13/18</u>
SAMPLING DATE: <u>11/10/18</u>	DATE ANALYZED: <u>11/13/18</u>
REPORT TO: MR. ZACHARY FREEMAN	DATE REPORTED: <u>11/19/18</u>
CAMPTE T D . MEDI-E O	TAP T D , 101112 15

SAMPLE I.D.: MWD1-5.0

LAB I.D.: 181112-15

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	MDL	DF
Aldrin	ND	0.001	0.0001	1
alpha-BHC	ND	0.001	0.0002	1
beta-BHC	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
delta-BHC	ND	0.001	0.0002	1
alpha-Chlordane	ND	0.001	0.0002	1
gamma-Chlordane	ND	0.001	0.0001	1
Technical Chlordane	ND	0.005	0.0005	1
4,4'-DDD	ND	0.001	0.0003	1
4,4'-DDE	ND	0.001	0.0003	1
4,4'-DDT	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0003	1
Endosulfan I	ND	0.001	0.0002	1
Endosulfan II	ND	0.001	0.0001	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0004	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor_Epoxide	ND	0.001	0.0003	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St	Interchange	
PROJECT No.: 10326.001	DATE RECEIVED:11/12/18	
MATRIX: SOIL	DATE EXTRACTED:11/13/18	
SAMPLING DATE: <u>11/10/18</u>	DATE ANALYZED:11/13/18	
REPORT TO: MR. ZACHARY FREEMAN	DATE REPORTED: 11/19/18	

SAMPLE I.D.: MWD1-10.0

LAB I.D.: 181112-16

Organochlorine Pesticides Analysis

method: EPA 8081A

PARAMETER	SAMPLE RESULT	POL	MDL	DF
Aldrin	ND	0.001	0.0001	1
alpha-BHC	ND	0.001	0.0002	1
<u>beta-BHC</u>	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
delta-BHC	ND	0.001	0.0002	1
alpha-Chlordane	ND	0.001	0.0002	1
gamma-Chlordane	ND	0.001	0.0001	1
Technical Chlordane	ND	0.005	0.0005	1
4,4'-DDD	ND	0.001	0.0003	1
<u>4,4'-DDE</u>	ND	0.001	0.0003	1
<u>4,4'-DDT</u>	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0003	1
<u>Endosulfan I</u>	ND	0.001	0.0002	1
<u>Endosulfan II</u>	ND	0.001	0.0001	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0004	1
<u>Endrin Aldehyde</u>	ND	0.001	0.0001	1
<u>Endrin Ketone</u>	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0003	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

Data Reviewed and Approved by: CAL-DHS CERTIFICATE # 1555

Unit: mg/Kg = Milligram Per Kilogram = PPM

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St	Interchange	
PROJECT No.: 10326.001	DATE	RECEIVED: <u>11/12/18</u>
MATRIX: <u>SOIL</u>	DATE	EXTRACTED: 11/13/18
SAMPLING DATE: <u>11/10/18</u>	DATE	ANALYZED:11/13/18
REPORT TO: MR. ZACHARY FREEMAN	DATE	REPORTED: 11/19/18

SAMPLE I.D.: MWD501-5.0

LAB I.D.: 181112-18

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	MDL	DF
Aldrin	ND	0.001	0.0001	1
alpha-BHC	ND	0.001	0.0002	1
beta-BHC	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
<u>delta-BHC</u>	ND	0.001	0.0002	1
alpha-Chlordane	ND	0.001	0.0002	1
gamma-Chlordane	ND	0.001	0.0001	1
Technical Chlordane	ND	0.005	0.0005	1
<u>4,4'-DDD</u>	ND	0.001	0.0003	1
4,4'-DDE	ND	0.001	0.0003	1
4,4'-DDT	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0003	1
Endosulfan I	ND	0.001	0.0002	1
Endosulfan II	ND	0.001	0.0001	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0004	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0003	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

Data Reviewed and Approved by: CAL-DHS CERTIFICATE # 1555

1.11

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St	Interchange
PROJECT No.: 10326.001	DATE RECEIVED: 11/12/18
MATRIX: SOIL	DATE EXTRACTED: <u>11/13/18</u>
SAMPLING DATE: <u>11/10/18</u>	DATE ANALYZED: 11/13/18
REPORT TO: MR. ZACHARY FREEMAN	DATE REPORTED: <u>11/19/18</u>

SAMPLE I.D.: MWD002-0.5

LAB I.D.: 181112-19

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	MDL	DF
Aldrin	ND	0.001	0.0001	1
alpha-BHC	ND	0.001	0.0002	1
beta-BHC	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
delta-BHC	ND	0.001	0.0002	1
alpha-Chlordane	ND	0.001	0.0002	1
gamma-Chlordane	ND	0.001	0.0001	1
Technical Chlordane	ND	0.005	0.0005	1
4,4'-DDD	ND	0.001	0.0003	1
4,4'-DDE	ND	0.001	0.0003	1
4,4'-DDT	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0003	1
Endosulfan I	ND	0.001	0.0002	1
Endosulfan II	ND	0.001	0.0001	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0004	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0003	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St	Interchange	
PROJECT No.: 10326.001	DATE RECEIVED:11/12/18	
MATRIX: SOIL	DATE EXTRACTED:11/13/18	
SAMPLING DATE: <u>11/10/18</u>	DATE ANALYZED:11/13/18	
REPORT TO: MR. ZACHARY FREEMAN	DATE REPORTED: 11/19/18	
		ŝ

SAMPLE I.D.: MWD002-5.0

LAB I.D.: 181112-20

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	MDT.	ספ
Aldrin	ND	0 001	0 0001	1
alpha-BHC	ND	0.001	0.0002	1
beta-BHC	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0 0001	1
delta-BHC	ND	0.001	0.0002	1
alpha-Chlordane	ND	0.001	0.0002	1
gamma-Chlordane	ND	0.001	0.0001	1
Technical Chlordane	ND	0.005	0.0005	1
<u>4,4'-DDD</u>	ND	0.001	0.0003	1
<u>4,4'-DDE</u>	ND	0.001	0.0003	1
<u>4,4'-DDT</u>	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0 0003	1
<u>Endosulfan I</u>	ND	0.001	0.0002	1
Endosulfan II	ND	0.001	0.0001	1
Endosulfan Sulfate	ND	0.001	0 0001	1
Endrin	ND	0.001	0.0004	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0 0001	1
Heptachlor Epoxide	ND	0.001	0.0003	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

Data Reviewed and Approved by: CAL-DHS CERTIFICATE # 1555

M

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St	Interchange
PROJECT No.: 10326.001	DATE RECEIVED: <u>11/12/18</u>
MATRIX: <u>SOIL</u>	DATE EXTRACTED: 11/13/18
SAMPLING DATE: <u>11/10/18</u>	DATE ANALYZED: 11/13/18
REPORT TO: MR. ZACHARY FREEMAN	DATE REPORTED: 11/19/18

SAMPLE I.D.: MWD002-10.0

LAB I.D.: 181112-21

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	MDL	DF
Aldrin	ND	0.001	0.0001	1
alpha-BHC	ND	0.001	0.0002	1
beta-BHC	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
delta-BHC	ND	0.001	0.0002	1
alpha-Chlordane	ND	0.001	0.0002	1
gamma-Chlordane	ND	0.001	0.0001	1
Technical Chlordane	ND	0.005	0.0005	1
4,4'-DDD	ND	0.001	0.0003	1
4,4'-DDE	ND	0.001	0.0003	1
4,4'-DDT	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0003	1
Endosulfan I	ND	0.001	0.0002	1
<u>Endosulfan II</u>	ND	0.001	0.0001	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0004	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0003	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St	Interchange	
PROJECT No.: 10326.001	DATE RECEIVED: 11/12/18	
MATRIX: SOIL	DATE EXTRACTED: 11/13/18	
SAMPLING DATE: <u>11/10/18</u>	DATE ANALYZED:11/13/18	
REPORT TO: MR. ZACHARY FREEMAN	DATE REPORTED: 11/19/18	

SAMPLE I.D.: MWD003-0.5

LAB I.D.: 181112-22

Organochlorine Pesticides Analysis

method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	MD1.	ਸ
Aldrin	ND	0.001	0.0001	1
alpha-BHC	ND	0.001	0.0002	1
<u>beta-BHC</u>	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
delta-BHC	ND	0.001	0.0002	1
alpha-Chlordane	ND	0.001	0.0002	1
gamma-Chlordane	ND	0.001	0.0001	1
Technical Chlordane	ND	0.005	0.0005	1
4,4'-DDD	ND	0.001	0.0003	1
4,4'-DDE	ND	0.001	0.0003	1
4,4'-DDT	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0003	1
Endosulfan I	ND	0.001	0.0002	1
<u>Endosulfan II</u>	ND	0.001	0.0001	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0004	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0003	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St	Interchange
PROJECT No.: 10326.001	DATE RECEIVED: <u>11/12/18</u>
MATRIX: <u>SOIL</u>	DATE EXTRACTED: 11/13/18
SAMPLING DATE: <u>11/10/18</u>	DATE ANALYZED:11/13/18
REPORT TO: MR. ZACHARY FREEMAN	DATE REPORTED: <u>11/19/18</u>

SAMPLE I.D.: MWD003-5.0

LAB I.D.: 181112-23

Organochlorine Pesticides Analysis

method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

onic. mg/ng = miligram fer nitogram = PPM

PARAMETER	SAMPLE RESULT	PQL	MDL	DF
Aldrin	ND	0.001	0.0001	1
alpha-BHC	ND	0.001	0.0002	1
beta-BHC	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
delta-BHC	ND	0.001	0.0002	1
alpha-Chlordane	ND	0.001	0.0002	1
gamma-Chlordane	ND	0.001	0.0001	1
Technical Chlordane	ND	0.005	0.0005	1
4,4'-DDD	ND	0.001	0.0003	1
<u>4,4'-DDE</u>	ND	0.001	0.0003	1
4,4'-DDT	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0003	1
<u>Endosulfan I</u>	ND	0.001	0.0002	1
<u>Endosulfan II</u>	ND	0.001	0.0001	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0004	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0003	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

11

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St	Interchange
PROJECT No.: 10326.001	DATE RECEIVED: <u>11/12/18</u>
MATRIX: SOIL	DATE EXTRACTED: <u>11/13/18</u>
SAMPLING DATE: <u>11/10/18</u>	DATE ANALYZED: <u>11/13/18</u>
REPORT TO: MR. ZACHARY FREEMAN	DATE REPORTED: <u>11/19/18</u>

SAMPLE I.D.: MWD003-10.0

LAB I.D.: 181112-24

Organochlorine Pesticides Analysis

method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	MDL	DF
Aldrin	ND	0.001	0.0001	1
alpha-BHC	ND	0.001	0.0002	1
beta-BHC	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
delta-BHC	ND	0.001	0.0002	1
alpha-Chlordane	ND	0.001	0.0002	1
gamma-Chlordane	ND	0.001	0.0001	1
Technical Chlordane	ND	0.005	0.0005	1
4,4'-DDD	ND	0.001	0.0003	1
4,4'-DDE	ND	0.001	0.0003	1
4,4'-DDT	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0003	1
Endosulfan I	ND	0.001	0.0002	1
Endosulfan II	ND	0.001	0.0001	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0004	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0003	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St	Interchange
PROJECT No.: 10326.001	DATE RECEIVED: <u>11/12/18</u>
MATRIX: SOIL	DATE EXTRACTED: <u>11/13/18</u>
SAMPLING DATE: 11/10/18	DATE ANALYZED: <u>11/13/18</u>
REPORT TO: MR. ZACHARY FREEMAN	DATE REPORTED: <u>11/19/18</u>
CANDLE T D . METDOOA O E	IAD I D . 101110 05

SAMPLE I.D.: MWD004-0.5

LAB I.D.: 181112-25

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	MDL	DF
Aldrin	ND	0.001	0.0001	1
alpha-BHC	ND	0.001	0.0002	1
beta-BHC	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
delta-BHC	ND	0.001	0.0002	1
alpha-Chlordane	ND	0.001	0.0002	1
gamma-Chlordane	ND	0.001	0.0001	1
Technical Chlordane	ND	0.005	0.0005	1
4,4'-DDD	ND	0.001	0.0003	1
4,4'-DDE	ND	0.001	0.0003	1
4,4'-DDT	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0003	1
Endosulfan I	ND	0.001	0.0002	1
Endosulfan II	ND	0.001	0.0001	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0004	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0003	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St	Interchange
PROJECT No.: 10326.001	DATE RECEIVED: <u>11/12/18</u>
MATRIX: <u>SOIL</u>	DATE EXTRACTED: <u>11/13/18</u>
SAMPLING DATE: <u>11/10/18</u>	DATE ANALYZED: <u>11/13/18</u>
REPORT TO: MR. ZACHARY FREEMAN	DATE REPORTED: 11/19/18

SAMPLE I.D.: MWD004-5.0

LAB I.D.: 181112-26

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	MDL	DF
Aldrin	ND	0.001	0.0001	1
alpha-BHC	ND	0.001	0.0002	1
beta-BHC	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
delta-BHC	ND	0.001	0.0002	1
alpha-Chlordane	ND	0.001	0.0002	1
gamma-Chlordane	ND	0.001	0.0001	1
Technical Chlordane	ND	0.005	0.0005	1
4,4'-DDD	ND	0.001	0.0003	1
4,4'-DDE	ND	0.001	0.0003	1
4,4'-DDT	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0003	1
Endosulfan I	ND	0.001	0.0002	1
Endosulfan II	ND	0.001	0.0001	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0004	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0003	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

N

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St	Interchange
PROJECT No.: 10326.001	DATE RECEIVED: <u>11/12/18</u>
MATRIX: SOIL	DATE EXTRACTED: 11/13/18
SAMPLING DATE: <u>11/10/18</u>	DATE ANALYZED: 11/13/18
REPORT TO: MR. ZACHARY FREEMAN	DATE REPORTED: 11/19/18

SAMPLE I.D.: MWD004-10.0 LAB I.D.: 181112-27

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	MDL	DF
Aldrin	ND	0.001	0.0001	1
alpha-BHC	ND	0.001	0.0002	1
beta-BHC	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
<u>delta-BHC</u>	ND	0.001	0.0002	1
alpha-Chlordane	ND	0.001	0.0002	1
gamma-Chlordane	ND	0.001	0.0001	1
Technical Chlordane	ND	0.005	0.0005	1
4,4'-DDD	ND	0.001	0.0003	1
4,4'-DDE	ND	0.001	0.0003	1
4,4'-DDT	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0003	1
Endosulfan I	ND	0.001	0.0002	1
Endosulfan II	ND	0.001	0.0001	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0004	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0003	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

SAMPLE I.D.: MWD504-5.0

LAB I.D.: 181112-28

Organochlorine Pesticides Analysis

method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	MDT.	DF
Aldrin	ND	0.001	0.0001	1
alpha-BHC	ND	0.001	0.0002	1
<u>beta-BHC</u>	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
<u>delta-BHC</u>	ND	0.001	0.0002	1
alpha-Chlordane	ND	0.001	0.0002	1
gamma-Chlordane	ND	0.001	0.0001	1
Technical Chlordane	ND	0.005	0.0005	1
<u>4,4'-DDD</u>	ND	0.001	0.0003	1
<u>4,4'-DDE</u>	ND	0.001	0.0003	1
<u>4,4'-DDT</u>	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0003	1
Endosulfan I	ND	0.001	0.0002	1
<u>Endosulfan II</u>	ND	0.001	0.0001	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0004	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
<u>Heptachlor Epoxide</u>	ND	0.001	0.0003	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St	Interchange	
PROJECT No.: 10326.001	DATE	RECEIVED: <u>11/12/18</u>
MATRIX: SOIL	DATE	EXTRACTED: <u>11/13/18</u>
SAMPLING DATE: <u>11/10/18</u>	DATE	ANALYZED: <u>11/13/18</u>
REPORT TO: MR. ZACHARY FREEMAN	DATE	REPORTED: <u>11/19/18</u>

SAMPLE I.D.: **P027-0.5**

LAB I.D.: 181112-29

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	MDL	DF
Aldrin	ND	0.001	0.0001	1
alpha-BHC	ND	0.001	0.0002	1
<u>beta-BHC</u>	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
delta-BHC	ND	0.001	0.0002	1
alpha-Chlordane	ND	0.001	0.0002	1
gamma-Chlordane	ND	0.001	0.0001	1
Technical Chlordane	ND	0.005	0.0005	1
4,4'-DDD	ND	0.001	0.0003	1
4,4'-DDE	ND	0.001	0.0003	1
4,4'-DDT	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0003	1
Endosulfan I	ND	0.001	0.0002	1
Endosulfan II	ND	0.001	0.0001	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0004	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0003	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St	Interchange	
PROJECT No.: 10326.001	DATE RECEIVED: <u>11/12/18</u>	
MATRIX: <u>SOIL</u>	DATE EXTRACTED: <u>11/13/18</u>	
SAMPLING DATE: <u>11/10/18</u>	DATE ANALYZED: <u>11/13/18</u>	
REPORT TO: MR. ZACHARY FREEMAN	DATE REPORTED: 11/19/18	

SAMPLE I.D.: **P028-0.5**

LAB I.D.: 181112-31

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	MDL	DF
Aldrin	ND	0.001	0.0001	1
alpha-BHC	ND	0.001	0.0002	1
beta-BHC	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
delta-BHC	ND	0.001	0.0002	1
alpha-Chlordane	ND	0.001	0.0002	1
gamma-Chlordane	ND	0.001	0.0001	1
Technical Chlordane	ND	0.005	0.0005	1
4,4'-DDD	ND	0.001	0.0003	1
4,4'-DDE	ND	0.001	0.0003	1
4,4'-DDT	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0003	1
Endosulfan I	ND	0.001	0.0002	1
Endosulfan II	ND	0.001	0.0001	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0004	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0003	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St	Interchange
PROJECT No.: 10326.001	DATE RECEIVED: <u>11/12/18</u>
MATRIX: <u>SOIL</u>	DATE EXTRACTED: <u>11/13/18</u>
SAMPLING DATE: <u>11/10/18</u>	DATE ANALYZED: <u>11/13/18</u>
REPORT TO: MR. ZACHARY FREEMAN	DATE REPORTED: <u>11/19/18</u>
CAMPTE T D . DEOD O E	TAD T D . 101110 00

SAMPLE I.D.: **P528-0.5**

LAB I.D.: 181112-33

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	MDL	DF
Aldrin	ND	0.001	0.0001	1
alpha-BHC	ND	0.001	0.0002	1
beta-BHC	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
delta-BHC	ND	0.001	0.0002	1
alpha-Chlordane	ND	0.001	0.0002	1
gamma-Chlordane	ND	0.001	0.0001	1
Technical Chlordane	ND	0.005	0.0005	1
4,4'-DDD	ND	0.001	0.0003	1
4,4'-DDE	ND	0.001	0.0003	1
4,4'-DDT	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0003	1
Endosulfan I	ND	0.001	0.0002	1
<u>Endosulfan II</u>	ND	0.001	0.0001	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0004	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0003	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc. 10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St In	nterchange
PROJECT No.: 10326.001	DATE RECEIVED: <u>11/12/18</u>
MATRIX: <u>SOIL</u>	DATE EXTRACTED: <u>11/13/18</u>
SAMPLING DATE: <u>11/10/18</u>	DATE ANALYZED: <u>11/14/18</u>
REPORT TO: MR. ZACHARY FREEMAN	DATE REPORTED: <u>11/19/18</u>

SAMPLE I.D.: **P020-0.5**

LAB I.D.: 181112-35

Organochlorine Pesticides Analysis

method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	MDL	DF
Aldrin	ND	0.001	0.0001	1
alpha-BHC	ND	0.001	0.0002	1
beta-BHC	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
delta-BHC	ND	0.001	0.0002	1
alpha-Chlordane	ND	0.001	0.0002	1
gamma-Chlordane	ND	0.001	0.0001	1
Technical Chlordane	ND	0.005	0.0005	1
4,4'-DDD	ND	0.001	0.0003	1
4,4'-DDE	0.005	0.001	0.0003	1
4,4'-DDT	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0003	1
Endosulfan I	ND	0.001	0.0002	1
Endosulfan II	ND	0.001	0.0001	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0004	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0003	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St	Interchange
PROJECT No.: 10326.001	DATE RECEIVED: <u>11/12/18</u>
MATRIX: <u>SOIL</u>	DATE EXTRACTED: 11/13/18
SAMPLING DATE: <u>11/10/18</u>	DATE ANALYZED: 11/13/18
REPORT TO: MR. ZACHARY FREEMAN	DATE REPORTED: <u>11/19/18</u>

METHOD BLANK FOR LAB I.D.:

181112-10, -12, -14, -15, -16, -18 THROUGH -29, -31, -33, -35

Organochlorine Pesticides Analysis method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	MDL	DF
Aldrin	ND	0.001	0.0001	1
alpha-BHC	ND	0.001	0.0002	1
beta-BHC	ND	0.001	0.0001	1
gamma-BHC (Lindane)	ND	0.001	0.0001	1
delta-BHC	ND	0.001	0.0002	1
alpha-Chlordane	ND	0.001	0.0002	1
gamma-Chlordane	ND	0.001	0.0001	1
Technical Chlordane	ND	0.005	0.0005	1
4,4'-DDD	ND	0.001	0.0003	1
4,4'-DDE	ND	0.001	0.0003	1
4,4'-DDT	ND	0.001	0.0001	1
Dieldrin	ND	0.001	0.0003	1
Endosulfan I	ND	0.001	0.0002	1
Endosulfan II	ND	0.001	0.0001	1
Endosulfan Sulfate	ND	0.001	0.0001	1
Endrin	ND	0.001	0.0004	1
Endrin Aldehyde	ND	0.001	0.0001	1
Endrin Ketone	ND	0.001	0.0001	1
Heptachlor Epoxide	ND	0.001	0.0003	1
Heptachlor	ND	0.001	0.0001	1
Methoxyclor	ND	0.001	0.0001	1
Toxaphene	ND	0.020	0.0100	1

COMMENTS:

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

	1214	E. Lexington	Avenue, Pom PA 80	nona, CA 9176	6 Tel (90	9)590-5905 Fa	ax (909)590-59()7	
Matrix: Unit:	Soil/So mg/Kg (pp	o <mark>lid/Liqu</mark> om)	id(Oil)			Da	ate Analyzed	: <u>11/13-14/2</u> (018
Matrix Spike (M Spiked Sample	S)/Matrix Spi Lab I.D.:	<u>ke Duplica</u> 181112-	<u>te (MSD)</u> 14 MS/MS	D					
Analyte	S.R.	spk conc	MS	%REC	MSD	%REC	%RPD	ACP %RPD	ACP %REC
Gamma-BHC	0.000	0.00500	0.00546	109%	0.00603	121%	10%	0-20%	70-130
Aldrin	0.000	0.00500	0.00618	124%	0.00601	120%	3%	0-20%	70-130
4,4-DDE	0.000	0.00500	0.00552	110%	0.00527	105%	5%	0-20%	70-130
Lab Control Spi	ke (LCS) Rec	LCS	% REC	ACP	%REC]			
Gamma-BHC	0.00500	0.00598	120%	75-	125				
Aldrin	0.00500	0.00572	114%	75-	125				
Dieldrin	0.00500	0.00597	119% 124%	75-	125 125				
Surrogate Recov	ery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.			MB	181112-10	181112-12	181112-14	181112-15	181112-16	181112-18
Tetra-chloro-met	a-xylene	50-150	80%	76%	78%	69%	79%	74%	79%
Decachlorobiphe	nyl	50-150	96%	85%	87%	84%	92%	100%	98%
Surrogate Recov	ery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.			181112-19	181112-20	181112-21	181112-22	181112-23	181112-24	181112-25
Tetra-chloro-meta	a-xylene	50-150	79%	79%	82%	79%	85%	80%	78%
Decachlorobiphe	nyl	50-150	92%	92%	95%	88%	90%	92%	92%

Enviro-Chem, Inc.

%REC Surrogate Recovery ACP% %REC %REC %REC %REC %REC %REC Sample I.D. 181112-26 181112-27 181112-28 181112-29 181112-31 181112-33 181112-35 Tetra-chloro-meta-xylene 50-150 86% 77% 77% 77% 83% 82% 79% Decachlorobiphenyl 50-150 89% 87% 88% 88% 90% 77% 51%

S.R. = Sample Result

* = Surrogate fail due to matrix interference (If Marked)

spk conc = Spike Concentration

%REC = Percent Recovery

ACP %RPD = Acceptable Percent RPD Range

ACP %REC = Acceptable Percent Recovery Range

Analyzed and Reviewed By;

Final Reviewer:

Note: LCS, MS, MSD are in control therefore results are in control.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St	Interchange
PROJECT No.: 10326.001	DATE RECEIVED: 11/12/18
MATRIX: <u>WATER</u>	DATE EXTRACTED:11/12/18
SAMPLING DATE: <u>11/10/18</u>	DATE ANALYZED: 11/15/18
REPORT TO: MR. ZACHARY FREEMAN	DATE REPORTED: 11/19/18

TOTAL	PETROLEUM	HYDROCARBONS (TPH) - CARBON CHAIN ANALYSIS	
		METHOD: EPA 8015B	
	UNIT:	uG/L = MICROGRAM PER LITER = PPB	

						and the second
SAMPLE	I.D.	LAB I.D.	C4-C10	C11-C22	C23-C35	DF
E001		181112-37	ND	ND	ND	1
METHOD	BLANK		ND	ND	ND	1
		MDL	250	250	2500	
		PQL	500	500	5000	

COMMENTS

C4-C10 = GASOLINE RANGE C11-C22 = DIESEL RANGE C23-C35 = MOTOR OIL RANGE DF = DILUTION FACTOR MDL = METHOD DETECTION LIMIT PQL = PRACTICAL QUANTITATION LIMIT J = TRACE CONCENTRATION BETWEEN MDL AND PQL ACTUAL DETECTION LIMIT = DF X PQL ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT Data Reviewed and Approved by: CAL-DHS ELAP CERTIFICATE No.: 1555

			E	nviro Che	m, Inc				
1214 E. L	exingtor	Avenue,	Pomona,	CA 91766	i Tel (909)590-5	5905 Fa	x (909)590	-5907
		8	8015B	QA/Q	C Rep	oort			
Date Analyzed	:	<u>11/15/201</u>	8				Units:	ug/L (PP	<u>B)</u>
Matrix:	Wate	er/Liqu	id						
Matrix Spike (MS)	/Matrix Sp	ike Duplicate	e (MSD)	0.840/64					
Spiked Sample	e Lab I.D.		181113	-3 11/10/11	<u>ISD</u>				
Analyte	SR	spk conc	MS	%MS	MSD	%MSD	%RPD	ACP %MS	ACP RPD
LCS STD RECO	Spk conc	LCS	% REC	ACP 75-125					
	12000	1 10000 1	0070	10120					
Analyzed and I	Reviewed	d by:	£	_					
Final Reviewer	:	Ø							

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St PROJECT No.: 10326.001	Interchange
MATRIX: <u>WATER</u> SAMPLING DATE: <u>11/10/18</u> REPORT TO: <u>MR. ZACHARY FREEMAN</u>	DATE RECEIVED: <u>11/12/18</u> DATE ANALYZED: <u>11/13/18</u> DATE REPORTED: <u>11/19/18</u>
CANDLE	

SAMPLE I.D.: E001

LAB I.D.: 181112-37 _____

TOTAL METALS ANALYSIS

UNIT: mg/L = MILLIGRAM PER LITER = PPM ------

ELEMENT ANALYZED	SAMPLE	DOT	100-		EPA
Antimony(Sb)	ND	PQL	MDL	DF	METHOD
Arsenic (As)	ND	0.02	0.005	1	200.7
Barium (Ba)	ND	0.01	0.005	1	200.7
Darrun (Da)	ND	0.10	0.003	1	200.7
Beryllium (Be)	ND	0.01	0.004	1	200 7
Cadmium (Cd)	ND	0.01	0.002	1	200.7
Chromium(Cr)	ND	0.01	0 003	2	200.7
Cobalt(Co)	ND	0.02	0.000	1	200.7
Copper(Cu)	ND	0.02	0.003	1	200.7
Lead(Pb)	ND	0.02	0.004	1	200.7
Mercury (Ha)	ND	0.01	0.004	1	200.7
Molyhdenum (Mo)	ND	0.0005	0.0002	1	245.1
Nickol (Ni)	ND	0.1	0.005	1	200.7
Selepium (G.)	ND	0.05	0.003	1	200.7
Selenium (Se)	ND	0.02	0.005	1	200 7
Silver(Ag)	ND	0.02	0.008	1	200.7
Thallium(Tl)	ND	0.02	0 009	1	200.7
Vanadium(V)	ND	0 1	0.000	1	200.7
Zinc(Zn)	ND	0.01	0.003	1	200.7
		0.01	0.003	1	200.7

COMMENTS

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit J = Trace Concentration between MDL and PQL Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected Data Reviewed and Approved by:

CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

SR-60 & Theodore St Interchange PROJECT: PROJECT No.: 10326.001 MATRIX: WATER SAMPLING DATE:11/10/18DATE ANALYZED:11/13/18REPORT TO:MR. ZACHARY FREEMANDATE REPORTED:11/19/18

DATE RECEIVED: 11/12/18 _____

-----METHOD BLANK FOR LAB I.D.: 181112-37

TOTAL METALS ANALYSIS

UNIT: mg/L = MILLIGRAM PER LITER = PPM ------

ELEMENT	SAMPLE				EPA
ANALYZED	RESULT	PQL	MDL	ਸਾ	MERINOD
Antimony(Sb)	ND	0.02	0 005	DE	METHOD
Arsenic(As)	ND	0 01	0.005	1	200.7
Barium(Ba)	ND	0.01	0.005	1	200.7
Beryllium(Be)	ND	0.10	0.003	1	200.7
Cadmium (Cd)	ND	0.01	0.004	1	200.7
Chromium(Cr)	ND	0.01	0.002	1	200.7
Cobalt(Co)	ND	0.01	0.003	1	200.7
Copper(Cii)	ND	0.02	0.003	1	200.7
Lead (Pb)	ND	0.02	0.004	. 1	200.7
Mercury (Ha)	ND	0.01	0.004	1	200.7
Molybdonum (Mo)	ND	0.0005	0.0002	1	245.1
Nickol (Ni)	ND	0.1	0.005	1	200 7
Solopium (G.)	ND	0.05	0.003	1	200.7
Selenium (Se)	ND	0.02	0.005	1	200.7
Silver(Ag)	ND	0.02	0.008	1	200.7
Thallium (T1)	ND	0.02	0.009	Ť	200.7
Vanadium(V)	ND	0.1	0 003	1	200.7
Zinc(Zn)	ND	0.01	0.003	7	200.7
			0.000	1	200.7

COMMENTS

DF = Dilution Factor MDL = Method Detection Limit PQL = Practical Quantitation Limit J = Trace Concentration between MDL and PQL Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit, or non-detected

Intrix Spike/Matrix Spike Dublicate/LCS: Metals Analysis Date: 11/13/2018 Metals Analysis Date: 11/13/2018 Analysis Date: 11/13/2018 Analysis Date: 11/13/2018 Analysis Date: 11/13/2018 CONC. %Rec. LCS Sample LCS Sample CS Antimony (SN) 181112-37 1.00 105 PAIS 0 1.00 1.23 123% 123	latrix Spike/ M Metals A	other Calles										
Markample Date: 111/132018 Markample Date: 111/132018 Analysis Date: 111/132018 Analysis Spksample LCS LCS LCS Splite MS Rec MSD % Rec		aurix opike	UUDIICAT	e/ LCS :								
Analysis Spk.Bample LCS LCS LCS MS Spk.Rample MS % Rec MS % Rec %	Mercury A	nalysis Date :	11/13/2018			Į				Uni	t : <u>mg/L(p</u>	<u>(mc</u>
Artimory (Sb) 181112-37 1.00 0.77 ASS 0 1.00 1.25 1.25% 1.25 1.25% 1.25 1.25% 1.25 1.25% 1.25 1.25% 1.25 1.25% 1.25 1.25% 1.25 1.25% 1.25 1.25% 1.25 1.25% 1.25 1.25% 1.25 1.25% 1.25 1.25% <th>Analysis</th> <th>Spk.Sample ID</th> <th>LCS</th> <th>LCS %</th> <th>LCS</th> <th>Sample</th> <th>Spike</th> <th>SM</th> <th>% Rec</th> <th>MSD</th> <th>% Rec</th> <th>% RPD</th>	Analysis	Spk.Sample ID	LCS	LCS %	LCS	Sample	Spike	SM	% Rec	MSD	% Rec	% RPD
Arsenic (As) 181112-37 1.00 108 PASS 0 1.00 1.23 1.23% 1.23 1.23% 1.23 1.23% 1.23 1.23% 1.23 1.23% 1.23 1.23% 1.23 1.23% 1.23 1.23% 1.23 1.23% 1.23 1.23% 1.23 1.23% 1.23 1.23% 1.23 1.23% 1.23 1.23% 1.23 1.23% 1.23 1.23% 1.23 1.23% 1.23 1.23% 1.23 1.23% 1.23% 1.20% 1.23 1.23% 1.23 1.23% 1.23 1.23% 1.23 1.23% 1.23 1.23% 1.23 1.23% 1.23 1.23% 1.23 1.23% 1.23 1.23% 1.23 1.23% 1.23 1.23% 1.23 1.23% 1.23% 1.23% 1.23% 1.23 1.23% 1.23 1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 1.23% </td <td>Antimony (Sb)</td> <td>181112-37</td> <td>1.00</td> <td>107</td> <td>PASS</td> <td>0</td> <td>1.00</td> <td>1 25</td> <td>125%</td> <td>1 25</td> <td>1250/</td> <td>700</td>	Antimony (Sb)	181112-37	1.00	107	PASS	0	1.00	1 25	125%	1 25	1250/	700
Bartum (Ba) 181112-37 1.00 105 PASS 0 1.00 1.17 117% 118% 19 Beryllium (Be) 181112-37 1.00 106 PASS 0 1.00 1.20 <td>Arsenic (As)</td> <td>181112-37</td> <td>1.00</td> <td>108</td> <td>PASS</td> <td>0</td> <td>1.00</td> <td>1.23</td> <td>123%</td> <td>1 23</td> <td>123%</td> <td>700</td>	Arsenic (As)	181112-37	1.00	108	PASS	0	1.00	1.23	123%	1 23	123%	700
Beryllium (Be) 18112-37 1.00 106 Mass 0 1.00 1.20 1.20% 1.20 1.20% 1.21% <th1.21%< th=""> <th< td=""><td>Barium (Ba)</td><td>181112-37</td><td>1.00</td><td>105</td><td>PASS</td><td>0</td><td>1.00</td><td>1.17</td><td>117%</td><td>1.18</td><td>118%</td><td>1%</td></th<></th1.21%<>	Barium (Ba)	181112-37	1.00	105	PASS	0	1.00	1.17	117%	1.18	118%	1%
Cadmium (Cd) 181112-37 1.00 111 PASS 0 1.00 1.28 1.28% 1.28 1.28% 0 Chromium (Cr) 181112-37 1.00 104 PASS 0 1.00 1.14 1.14% 1.15 1.15% 19 Chromium (Cr) 181112-37 1.00 104 PASS 0 1.00 1.28 1.23% 1.23 1.23% 1.23 1.23% 1.23 1.23% 1.23 1.23% 1.17% 1.17% 1.17% 1.17% 1.12% 1.12% 1.12% 1.12% 1.12% 1.12% 1.12% 1.12% 1.12% 1.12% 1.12% 1.12% 1.12% 1.12%	Beryllium (Be)	181112-37	1.00	106	PASS	0	1.00	1.20	120%	1.20	120%	%0
Chromium (Cr) 181112-37 1.00 104 PASS 0 1.00 1.14 1.14% 1.15 1.15% 19 Cobatt (Co) 181112-37 1.00 109 PASS 0 1.00 1.23 123% 123 123% 0 Cobatt (Co) 181112-37 1.00 104 PASS 0 1.00 1.23 123% 123 123% 0 Copper (Cu) 181112-37 1.00 113 PASS 0 1.00 1.23 123% 123 123% 0 Mercury (Hg) 181112-37 1.00 113 PASS 0 1.00 1.11 1111 111 1112	Cadmium (Cd)	181112-37	1.00	111	PASS	0	1.00	1.28	128%	1.28	128%	%0
Cobalt (Co) 181112-37 1.00 103 PASS 0 1.00 1.23 1.23% 1.23 1.23% 1.23 1.23% 1.23 1.23% 1.23 1.23% 1.23 1.23% <th1.23%< th=""> <th1.24%< th=""> 1.23%<</th1.24%<></th1.23%<>	Chromium (Cr)	181112-37	1.00	104	PASS	0	1.00	1.14	114%	1.15	115%	1%
Copper (Cu) 181112-37 1.00 104 PASS 0 1.00 1.16 1.17 1.17% 1.99 Lead (Pb) 181112-37 1.00 113 PASS 0 1.00 1.29 129% 129% 0 Mercury (Hg) 181112-37 0.0025 100.0 PASS 0 0.0025 0.0023 88% 0.0023 92% 49 Mercury (Hg) 181112-37 1.00 110 PASS 0 1.00 1.11 111% 112 112% 19 129% 199 19% 14% 111% 111% 111% 111% 111% 111% 111% 111% 111% 111% 111% 111% 111% 111% 111% 111% 112%	Cobalt (Co)	181112-37	1.00	109	PASS	0	1.00	1.23	123%	1.23	123%	0%0
Lead (Pb) 181112-37 1.00 113 PASS 0 1.00 1.29 129% 129% 09 Mercury (Hg) 181112-37 0.0025 100.0 PASS 0 0.0025 88% 0.0023 92% 49 Mercury (Hg) 181112-37 1.00 110 PASS 0 1.00 1.11 111% 1.12 112% 1.12 Molybdenum(Mo) 181112-37 1.00 100 PASS 0 1.00 1.11 111% 1.12 112% 1.12 Nickel (Ni) 181112-37 1.00 106 PASS 0 1.00 1.14 1.17 1.17% 1.18% 1.12 Silver (Ag) 181112-37 0.10 109 PASS 0 0.100 1.14 1.14% 1.14 Vanadium (V) 181112-37 1.00 104 PASS 0 1.00 1.13% 1.14 1.14% 1.14 Vanadium (V) 1811112-37 1.00 104<	Copper (Cu)	181112-37	1.00	104	PASS	0	1.00	1.16	116%	1.17	117%	1%
Mercury (Hg) 181112-37 0.0025 100.0 <i>PASS</i> 0 0.0025 0.0022 88% 0.0023 92% 49 Molybdenum(Mo) 181112-37 1.00 110 <i>PASS</i> 0 1.00 1.11 1.11% 1.12 1.12% 1.9 Nickel (Ni) 181112-37 1.00 106 <i>PASS</i> 0 1.00 1.17 111% 1.12 1.12% 1.9 Nickel (Ni) 181112-37 1.00 106 <i>PASS</i> 0 1.00 1.40 1.41 1.41 1.9	Lead (Pb)	181112-37	1.00	113	PASS	0	1.00	1.29	129%	1.29	129%	%0
Molybdenum(Mo) 181112-37 1.00 110 <i>PASS</i> 0 1.00 1.11 111% 112 112% 19 Nickel (Ni) 181112-37 1.00 106 <i>PASS</i> 0 1.00 1.17% 1.18 118% 19 Selenium (Se) 181112-37 1.00 109 <i>PASS</i> 0 1.00 1.40 1.41 1.11% 1.19% 1.41 Selenium (Se) 181112-37 1.00 109 <i>PASS</i> 0 0.100 0.067 67% 0.058 58% 14 Thallium (TI) 181112-37 1.00 104 <i>PASS</i> 0 1.00 1.07 107% 1.07 107% 1.07 0.07 0% 0.058 58% 14 Vanadium (V) 181112-37 1.00 104 <i>PASS</i> 0 1.00 1.07 107% 1.07 0.07 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	Mercury (Hg)	181112-37	0.0025	100.0	PASS	0	0.0025	0.0022	88%	0.0023	92%	4%
Nickel (Ni) 181112-37 1.00 106 PASS 0 1.00 1.17% 1.18 1.18% 19 Selenium (Se) 181112-37 1.00 109 PASS 0 1.00 1.40 1.40% 1.41 1.41% 1.9 Selenium (Se) 181112-37 0.10 109 PASS 0 0.100 0.405 67% 0.058 58% 149 Silver (Ag) 181112-37 1.00 104 PASS 0 1.00 1.13 1.13% 1.14 1.14% 19 Vanadium (V) 181112-37 1.00 99 PASS 0 1.00 1.13 1.13% 1.14 114% 19 Vanadium (V) 181112-37 1.00 114 PASS 0 1.00 1.07% 1.07% 1.07% 0.07 Vanadium (V) 181112-37 1.00 114 PASS 0 1.00 1.07% 1.07% 1.07% 0.07% 0.07% 0.07% 0.07%	Molybdenum(Mo)	181112-37	1.00	110	PASS	0	1.00	1.11	111%	1.12	112%	1%
Selenium (Se) 181112-37 1.00 109 PASS 0 1.00 1.40 1.41 1.44	Nickel (Ni)	181112-37	1.00	106	PASS	0	1.00	1.17	117%	1.18	118%	1%
Silver (Ag) 181112-37 0.10 104 PASS 0 0.100 0.067 67% 0.058 58% 14 Thallium (Tl) 181112-37 1.00 104 PASS 0 1.00 1.13 1.14 114% 1% Vanadium (V) 181112-37 1.00 99 PASS 0 1.00 1.13 1.13% 1.14 114% 1% Vanadium (V) 181112-37 1.00 99 PASS 0 1.00 1.07 107% 1.07 107% 0% Zinc (Zn) 181112-37 1.00 114 PASS 0 1.00 1.07 1.07% 1.07% 0% Zinc (Zn) 181112-37 1.00 114 PASS 0 1.00 1.07% 1.07% 0% Zinc (Zn) 181112-37 1.00 114 PASS 0 1.07% 1.07% 1.07% 0% Fail due to matrix interference 1 1.00 1.00 1.07%	Selenium (Se)	181112-37	1.00	109	PASS	0	1.00	1.40	140%	1,41	141%	1%
Thallium (TI) 181112-37 1.00 104 PASS 0 1.00 1.13 1.14 114 114 Vanadium (V) 181112-37 1.00 99 PASS 0 1.00 1.07 107% 1% Vanadium (V) 181112-37 1.00 99 PASS 0 1.00 1.07 107% 0% Zinc (Zn) 181112-37 1.00 114 PASS 0 1.00 1.34 1.34% 1.34% 0% Fail due to matrix interference return control Fail due to matrix interference return control Fail due to matrix interference FINAL REVIEWER:	Silver (Ag)	181112-37	0.10	104	PASS	0	0.100	0.067	67%	0.058	58%	14%
Vanadium (V) 181112-37 1.00 99 PASS 0 1.00 1.07 1.07 1.07 0 Zinc (Zn) 181112-37 1.00 114 PASS 0 1.00 1.07 1.07 1.07 0% Zinc (Zn) 181112-37 1.00 114 PASS 0 1.00 1.34 134% 0% Fail due to matrix interference AMALYST: CtCS is in control therefore results are in control FINAL REVIEWER:	Thallium (TI)	181112-37	1.00	104	PASS	0	1.00	1.13	113%	1.14	114%	1%
Zinc (Zn) 181112-37 1.00 1.34 1.34 1.34 1.34 0% Fail due to matrix interference ANALYST: Ana	Vanadium (V)	181112-37	1.00	66	PASS	0	1.00	1.07	107%	1.07	107%	%0
Fail due to matrix interference ote:LCS is in control therefore results are in control FINAL REVIEWER:	Zinc (Zn)	181112-37	1.00	114	PASS	0	1.00	1.34	134%	-1.34	134%	%0
Fail due to matrix interference ote:LCS is in control therefore results are in control FINAL REVIEWER:						4	NALYST-	1	2			
ote:LCS is in control therefore results are in control	Fail due to matrix inte	rference)	C		Ĩ	
	ote:LCS is in control th	terefore results a	ire in control			LL.	INAL REVIE	WER:	2	-		

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St	Interchange
PROJECT No.: 10326.001	DATE RECEIVED: 11/12/18
MATRIX: <u>WATER</u>	DATE EXTRACTED:11/12/18
SAMPLING DATE: <u>11/10/18</u>	DATE ANALYZED:11/15/18
REPORT TO: MR. ZACHARY FREEMAN	DATE REPORTED: 11/19/18

SAMPLE I.D.: E001

LAB I.D.: 181112-37

Organochlorine Pesticides Analysis Method: EPA 8081A

Unit: ug/L = Microgram per Liter = PPB

PARAMETER	SAMPLE RESULT	POL	MDT	ਸ਼ਹ
Aldrin	ND	0.100	0.004	1
alpha-BHC	ND	0.100	0.004	1
<u>beta-BHC</u>	ND	0.100	0.006	1
gamma-BHC (Lindane)	ND	0.100	0.004	1
<u>delta-BHC</u>	ND	0.100	0.003	1
<u>alpha-Chlordane</u>	ND	0.100	0.003	1
gamma-Chlordane	ND	0.100	0.004	1
Total Chlordane	ND	0.500	0.050	1
4,4'-DDD	ND	0.100	0.002	1
<u>4,4'-DDE</u>	ND	0.100	0.006	1
<u>4,4'-DDT</u>	ND	0.100	0.004	1
Dieldrin	ND	0.100	0.004	1
<u>Endosulfan I</u>	ND	0.100	0.005	1
Endosulfan II	ND	0.100	0.006	- 1
Endosulfan Sulfate	ND	0.100	0.005	1
Endrin	ND	0.100	0.004	1
Endrin Aldehyde	ND	0.100	0.040	1
Endrin Ketone	ND	0.100	0.004	1
Heptachlor Epoxide	ND	0.100	0.008	1
Heptachlor	ND	0.100	0.004	1
Methoxyclor	ND	0.100	0.004	1
Toxaphene	ND	2.00	1.00	1

COMMENTS

DF = Dilution Factor MDL = Method Detection Limit Actual Detection Limit = PQL X DF PQL = Practical Quantitation Limit J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT

CUSTOMER: Leighton Consulting, Inc.

10532 Acacia, Suite B-6, Rancho Cucamonga, CA 91730 Tel(909)527-8785 E-Mail: ZFreeman@Leightongroup.com

PROJECT: SR-60 & Theodore St	Interchange	
PROJECT No.: 10326.001	DATE	RECEIVED: <u>11/12/18</u>
MATRIX: <u>WATER</u>	DATE	EXTRACTED:11/12/18
SAMPLING DATE: <u>11/10/18</u>	DATE	ANALYZED: 11/15/18
REPORT TO: MR. ZACHARY FREEMAN	DATE	REPORTED: 11/19/18

METHOD BLANK FOR LAB I.D.: 181112-37

Organochlorine Pesticides Analysis Method: EPA 8081A

Unit: ug/L = Microgram per Liter = PPB

PARAMETER	SAMPLE RESULT	POL	MDT.	חד
Aldrin	ND	0.100	0.004	1
alpha-BHC	ND	0.100	0.004	1
<u>beta-BHC</u>	ND	0.100	0.006	1
gamma-BHC (Lindane)	ND	0.100	0.004	1
<u>delta-BHC</u>	ND	0.100	0.003	1
<u>alpha-Chlordane</u>	ND	0.100	0.003	1
gamma-Chlordane	ND	0.100	0.004	1
Total Chlordane	ND	0.500	0.050	1
<u>4,4'-DDD</u>	ND	0.100	0.002	1
<u>4,4'-DDE</u>	ND	0.100	0.006	1
<u>4,4'-DDT</u>	ND	0.100	0.004	1
Dieldrin	ND	0.100	0.004	1
Endosulfan I	ND	0.100	0.005	1
<u>Endosulfan II</u>	ND	0.100	0.006	1
Endosulfan Sulfate	ND	0.100	0.005	1
Endrin	ND	0.100	0.004	1
Endrin Aldehyde	ND	0.100	0.040	1
Endrin Ketone	ND	0.100	0.004	1
<u>Heptachlor Epoxide</u>	ND	0.100	0.008	1
Heptachlor	ND	0.100	0.004	1
Methoxyclor	ND	0.100	0.004	1
Toxaphene	ND	2.00	1.00	1

COMMENTS

DF = Dilution Factor MDL = Method Detection Limit Actual Detection Limit = PQL X DF PQL = Practical Quantitation Limit J = Trace Concentration between MDL and PQL ND = Below the Actual Detection Limit or non-detected

11

1214 E. Le	exington A	venue, P	Er omona,	viro-Che CA 91766	m, Inc. 5 Te	l (909)59(0-5905 F	ax (909)5	90-5907
		EPAD	08 (8	081) (2A/Q	C Rep	ort		
Matrix: Unit:	Water/L	iquid					Da	ate Analyzed	: <u>11/15/18</u>
Matrix Spike (M Spiked Sample	S)/Matrix Spi Lab I.D.:	ike Duplicat 181115-LC	te (MSD) S1/2						
Analyte	S.R.	spk conc	MS	%REC	MSD	%REC	%RPD		
Gamma-BHC	0	0.500	0.521	104%	0.546	109%	5%	0 20%	70 420
Aldrin	0	0.500	0.514	103%	0.568	114%	10%	0-20%	70-130
4,4-DDE	0	0.500	0.474	95%	0.456	91%	4%	0-20%	70-130
Analyte	spk conc	LCS	% REC	ACP	%REC]			
Gamma-BHC	0.500	0.548	110%	75-	125				
Aldrin	0.500	0.539	108%	75-	125	1			
4,4-DDE	0.500	0.502	100%	75-	125	1			
Dielarin	0.500	0.485	97%	75-	125	1			
Surrogate Recove	ery	ACP%	%REC	%REC	%REC	%REC	%REC	0/ DEC	1/ DEC
Sample I.D.			M-BLK	181112-37	181114-12	181115.9	101115 10	70ITEC	MEG
Tetra-chloro-meta	a-xylene	50-150	89%	117%	109%	100%	1270/		
Decachlorobipney	/1	50-150	85%	97%	97%	128%	97%		
Surrogate Recove	arv	%REC I	0/ DEC	N DEC	-NOCO				
Sample I D	51 9	JOINED	MEG	%REC	%REC	%REC	%REC	%REC	%REC
Tetra-chloro-meta	velono			-					
Decachlorobipney				-					_
Surrogate Recove	ery	%REC	%REC	%REC	%REC	%REC	%REC		
Sample I.D.									
l etra-chioro-meta	-xylene								
Sample I.D. Tetra-chloro-meta Decachlorobipney S.R. = Sample Result	-xylene								
spk conc = Spike Conc	centration								
6REC = Percent Reco	overy								
CP %RPD = Accepta	ble Percent RPD	Range							
CP %REC = Accepta	ble Percent Reco	overy Range							
nalyzed and Review	ed By:	2	*	= Surrogate fa	ail due to matri	x interference			
inal Paviawan	C		ħ	Note: LCS, MS	6, MSD are in	control theref	fore results ar	e in control.	1

Final Reviewer:

Misc./PO#	COMMENTS		16 ml -0	30	LL AN	Sim	-	2	10.0	2002								aaled	anda	cice Latine	Samlo Chance After And Lin	Return to Client O Store (30 Davs)		1002
57400 T 1000 B	Ivsis Required		2	×	-Ro												Sampler's Signature:	Badramen	Project Name/ID:	10.0226.001	Time 1/1, 1035 Instructions for	Time/////	t Time:	
NOITAVA	Ana	In X	8	X	XXX		XXX	XXX		XXX						a XXX		+ Hreman	54 8 2420	Reeman Direction	Date	Patu &	Date &	Y RECORD
SREMIATNOD : BRUTARE	No. OF	+ /	20		-										「大大山	,七れて/	Project Contact	FULLION	Tel: 909 - 6	Fax/Email: 24	117	1		USTOD
X	I IATAN	1 50:1			3		- 0	3		0			2			S0;1				230 ×	id by: A1	ed by:	:d by:	IN OF O
Turnaround Time 3 Same Day 3 24 Hours 3 48 Hours 3 48 Hours 2 48 H	SAMPLING DATE TIME	11-10-18 0724	1240 1	1740	074.	7/80	6823	0833	0839	0840		0110	760	0436	S60 1	1-10-10 0252			86	CA 917	Receive	Receive	Receive	CHA
590-5907	LABID	1112-10	1) ~ ~	1 1	6,	- 14	~ 15	- 16	()	~ 18		101 -	200	12-	22	1 - 23/1	tan	NIK .	it Suit	annaa	applaid	A		
Enviro-Chem, Inc. Labo 1214 E. Lexington Avenue Pomona, CA 91766 Tel: (909) 590-5905 Fax: (909 CA-DHS ELAP CERTIFICATE	SAMPLEID	4025-0.5 18	Por5-2.5	1026-0.5	1026-25	MW01-0.5	MW01-5.0	MNUDI-10.0	MW0501-0.5	MW0501-5,0	M40 501-10,0 MC	MW0002-0.5-	MWD002-5.0	MW/002-NO	MW 0003 - 0.6	11 W DOUZ-5.0	Company Name:	humann unvilan	Address: 10932 Acarila 2	City/State/Zip: hancha Cua	Relinquished by by PLA MAQ C	Relinquished by: Aur	Relinquished by:	11-10-2018

Sworten Description End Analysis Required connertrs Ruudoogg-70 0 15 201 140 1.0 3.00 1.0 0<	Enviro-Chem, Inc. L 1214 E. Lexington Ave Pomona, CA 91766 Tel: (909) 590-5905 Fax: (CA-DHS ELAP CERTIFICA	aboratories anue, (909) 590-5907	Turnaround Time o Same Day o 24 Hours o 48 Hours	X	соитлиеяз соитлиея	NOITAVA	1920 27 100 COLOR 1920	W	/lisc./PO#
Ruthology-lot Ruthology-lot Ruthology-lot Ruthology-lot Ruthology-lot Allubbioly-op ->6 103 1 1 Allubbioly-op ->9 1 1 1 <td< td=""><td>SAMPLE ID</td><td>LAB ID</td><td>DATE TIME</td><td>I IATAM</td><td>No. OF</td><td>BSBR</td><td>Analysis</td><td>Reguired</td><td>OMMENTS</td></td<>	SAMPLE ID	LAB ID	DATE TIME	I IATAM	No. OF	BSBR	Analysis	Reguired	OMMENTS
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	MN WD003-10.0	181112-24	1-10-18 101A	5 Soil	2010/	100	XXX		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MWD004 -0.5	52 - 1	501	- 8	-	-			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	M WD COUT - 5.0	1-26	1103			1	XXX		
MW50H-50 ->8 1/22 1/23 1/23 1/23 1/23 1/23 1/23 1/23 1/23 1/23 1/23 1/24	MW D004-10.0	47 -	1110	0	2	X	XXX		
VOX-05 -39 H44 H4 H64 8017-15 -30 1106 1 4 4 8018-05 -31 1106 1 4 4 8018-05 -32 121 4 4 4 8018-05 -32 121 4 4 4 8518-15 -32 121 4 4 4 8518-05 -35 121 1 4 4 8518-15 -32 121 1 4 4 8518-15 -35 121 5 1 4 8518-15 -35 121 5 1 4 8518-15 -35 121 5 1 4 8010-15 -37 121 5 1 4 8011 -37 121 5 1 4 8011 -37 121 5 1 4 8011 -37 121 5 1 4 8011 -37 121 5 1 4 8011 -37 121 5 1 4 8011 -37 121 1 1 1 <	1/11 W SOH - 5.0	85 -	1127				XXX		
PORT - 7.5 - 3 // 11/16 11/16 11/16 11/16 11/16 PORT - 25 - 3 // 12/16 1 // 16/16 1 // 16/16 1 // 16/16 PORT - 25 - 3 // 12/16 1 // 16/16 1 // 16/16 1 // 16/16 PORT - 25 - 3 // 12/16 1 // 16/16 1 // 16/16 1 // 16/16 PORT - 25 - 3 // 12/16 1 // 16/16 1 // 16/16 1 // 16/16 PORT - 25 - 3 // 12/16 1 // 16/16 1 // 16/16 1 // 16/16 PORT - 25 - 3 // 12/16 // 12/16 // 12/16 1 // 16/16 PORT - 25 - 3 // 12/16 // 12/16 // 12/16 1 // 16/16 PORT - 25 - 3 // 12/16 // 12/16 // 12/16 // 12/16 PORT - 25 - 26/16 // 27/16 // 26/16 // 12/16 PORT - 25 - 26/16 // 26/16 // 26/16 // 12/16 PORT - 26/16 - 26/17 // 26/16 // 12/16 // 12/16 PORT - 26/16 - 26/16 // 26/16 // 26/16 // 16/16 PORT - 26/16 - 26/16 // 26/16 // 26/16 // 26/16 PORT - 27 - 27 - 27 // 27 // 26/16 // 26/16 PORT - 26/16 - 26/16	V077-0.5	62 -	1144				XXX		
908-05 1 <td>807-7.9</td> <td>1 30</td> <td>1146</td> <td>0</td> <td>-</td> <td></td> <td></td> <td>1. Mail</td> <td>U</td>	807-7.9	1 30	1146	0	-			1. Mail	U
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2028-0.5	151	1011	-	5		XXX		2
P518-05 -33 1267 1267 1267 1267 P518-15 -34 D13 D13 D13 D14 P020-15 -35 1277 D11 D01 D11 P020-15 -35 1271 D11 D01 D11 P020-15 -33 1210 Soil 1 1 D01 P010-15 -33 1210 Soil 1 1 D01 P010-15 -33 1205 2 2 2 Company Name: -33 1205 2 2 2 Company Name: -33 1 1 1 1	R026-2.5	4.	121		14ct	X		H	10
P318-25 ::::::::::::::::::::::::::::::::::::	8228-0.5	", "	1267				X	3	X
P02.0-05 -35 1271 1 1 P02.0-55 -36 124/0 501 1 1 P02.0-55 -36 124/0 501 1 1 P01 -37 124/5 201 1 1 P01 -37 11-08 1245 201 1 1 P01 -37 1245 201 1 1 1 Company Name:	P528-25	tic.	P.C	2				1/1/	(V)
YOLO-25 Yell Yell Soil I Yell Yell F001 L-37 ILOR 1246 Ruid S i.e. Xell Company Name: Company Name: Project Contact: Project Contact: Project Contact: Project Contact: Project Contact: Company Name: Company Name: Project Contact: Project Contact: Project Contact: Project Contact: Project Contact: Company Name: Company Name: Project Contact: Project Contact: Project Contact: Project Contact: Project Contact: Company Name: Company Name: Project Contact: Project Contact: Project Contact: Project Contact: Project Contact: Company Name: Contact: Project Contact: Project Contact: Project Contact: Project Contact: Company Name: Contact: Project Contact: Project Contact: Project Contact: Project Contact: CityStateIZID: Pondin: Volt No Project Contact: Project Contact: CityStateIZID: Pondin: Prove Contact: Project Contact: Project NameID: CityStateIZID: Pondin: Project Contact: Project NameID: Project NameID: CityStateIZID: Pondin:	P020-0.5	Sé i	1237	1		-	X	5/02/	5
FOOL Image: Company Name: Company Name: Company Name: Company Name: Company Name: Company Name: Company Name: Company Name: Zanchark Received by: Zanchark Address: LOS 32 Meours & Zau; Ta Blo Relinquished by: Andress: Heinquished by: Andress: Project Up Received by: Address: Date & Ime: Min10, % Relinquished by: Andress: I.I16-Ten & Cutrk DF CUSTODY RECORD	1020-2.5	1-36	1241	0 Soil	-	ice		Harl.	
Company Name: Company Name: Let g harm: Description: Let g harm: Description: Address: LOS:32 Aca. Ta Start Blo Tel: 745-52 F355 Project NameID: City/State/Zip: Project NameID: Relinquished by: Not Carl St Father and Address is Start Blo Date & Time: III and Relinquished by: Not Carl St Father and Address is Start Blo Object NameID: Relinquished by: Not Carl Start Star	E001-	1-37	[1-1078 12 40	5 fluid	M	i'ce	XXX		6
Leta Waren Consultation Taichary Richary Richary Project Name(ID: Relinquished by: by the Richary Richary Richary Richary Richary Address: 105 32 Acoust & Suit BG Tel: 719-527-875 Project Name(ID: Robert Name(ID: 0.326:00) City/State/Zip: Manuful Control State Project Name(ID: 0.326:00) Relinquished by: by tay Richary Richary Richary Richary Richary Ringert Ringert Richary Ringert Richary Richary Richary Richary Ric	Company Name:				roject Cor	tact:			
Address: LOS_32 Acousta St. Sui tu BU Tel: 7/9-52.7.87.85 Project Name/ID: City/State/Zip: Non Min Control of Anothin Control of Anothin No.3.2.6.00/ Relinquished by: No.0.01 Received by: A transmit 2.57.curran Al / of Theodor St Enthunary Relinquished by: No.0.01 Received by: A transmit 2.57.curran Al / of Theodor St Enthunary Relinquished by: No.0.01 Received by: A transmit 2.57.curran Al / of Theodor St Enthunary Relinquished by: No.0.01 Received by: A transmit 2.57.curran Al / of Theodor St Enthunary Relinquished by: No.0.01 Received by: Date & Time: ///of 30 Relinquished by: No.0.01 Date & Time: ///of 30 O Dispose of O Return to Client O Store (30 Days) I.I1.6-1.2.01 CHAIN OF CUSTODY RECORD O Other: O Other:	Leighbon Consu	Whing the			Zachu	NY H	PC IMM	Contraction Contract	X
City/State/Zip: Manular Cuty/State/Zip: Manular Manular Manular Manular Manular Manular Relinquished by: Manular Manular Manular Manular Manular Manular Manular Relinquished by: Manular Manular Manular Manular Manular Manular Relinquished by: Manular Manular Manular Manular Manular 11-16-1cn Manular Manular Manular Manular Manular	Address: 105.32 Acourt	r st suit .	86		el: 719	-527	-878-	Project Name/ID:	
Relinquished by: A Car Mine C	City/State/Zip: Manelu	Conamongo	CA 917:	50 F	ax/Email:	ZARUN	an faller girtomarous com	St lo & Theodore St 3	the the there are
Relinquished by: A / A Received by: Date & Time: ///2//8 0 Dispose of 0 Return to Client 0 Store (30 Days) Relinquished by: Image: A filter in the image: A fi	Relinquished by: by conving	Cellane	Receive	ed by: 🤞	410		Date & Time: 11/11	instructions for Samula Storan	na Aftar Anolusia
Relinquished by: I - 16 - 7 - 0 Other: CHAIN OF CUSTODY RECORD	Relinquished by:	2104	Receive	d by:	5	5	Date & Time: M/2/	14.14- O Dispose of O Return to Client	t O Store (30 Days)
11-10-7-01 CHAIN OF CUSTODY RECORD	Relinquished by:		Receive	d by:		-	Date & Time:	0 Other:	
	11-10-2-01		CHA	IN OF C	USTC	DY R	ECORD	<	(